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 The usual flow of new information within science is such that experiments are used to 

refine our understanding of the world, with theory playing a supporting or interpretive role. The 

rarer occurrence comes from when theory is used to motivate new directions for scientific 

exploration. The difficulty of course comes from the need for a theory that can provide 

predictions for novel phenomena that are sufficiently accurate and precise enough to merit 

experimental efforts. Here I explore methods for improving the standard multiplet ligand field 

theory (MLFT) model of x-ray spectroscopy with density functional theory (DFT), with the goal 

of making it more ab-initio so that it can be used for predictive applications instead of just 

interpretive. The main improvements come from reducing the number of free parameters that are 

used when fitting an MLFT calculated spectra to experiment, namely the Slater-Condon scaling, 

crystal field, and ligand hopping parameters.  



First, I apply the DFT + MLFT framework to core-to-core X-ray emission spectroscopy 

(CtC-XES), exploring how the charge transfer dynamics are affected by the core-hole in the 

intermediate and final states. In this work, I surveyed 8 different 3d transition metal systems 

across the periodic table and analyze how calculated spectra reproduce trends across peak width, 

spin state, and integral intensity to conclusively demonstrate the accuracy of this approach. Next, 

I utilized this framework to explore a resonant shake effect that manifests in 3d0 materials when 

the bonding-antibonding splitting matches the 2p spin-orbit splitting. Through this resonance I 

was able to predict and later experimentally verify a new spectral feature within the Kα XES of 

PbCrO4, which too my knowledge is the first ever example of multiplet theory being used to 

inform new experiment. Finally, I switched focus to studying how the linear polarization x-ray 

emission of single crystal systems varies depending on local geometry and chemistry. I compared 

the information contained both a core-to-core level where the local anisotropy was transmitted 

through Coulomb coupling between the core and valence states, with valence-to-core x-ray 

emission spectroscopy (VtC-XES) where the occupied density of states directly reflects the local 

anisotropy. This project was also extended to a study of how the anisotropy in polarized VtC-

XES could be reproduced through supervised machine learning applied to a large dataset of 

crystal structures. This model highlights correlations between key chemical and geometric 

indicators such as the normalized quadrupole moment, and provides a continuous, quantitative 

method for characterizing spectral anisotropy. 
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Introduction 

Motivation 

Theoretical physics seeks to explain physical phenomenon through mathematical models 

which can be evaluated against experiments. To be successful, these models must rely on 

fundamental assumptions which can be interpreted and adjusted based on observations. The 

outcome of a successful theoretical model is twofold: 1) it provides a reliable method of 

reproducing experimental results, and 2) it provides a framework for interpreting new 

experiments through a model of the underlying physics. As experimental capabilities have grown 

over the last 120 years, the need for more accurate quantitative theoretical models has also 

grown. However, solving the ground state of a Coulombic Hamiltonian for an n-electron system 

quickly becomes an impossible problem, even with the massive development in computational 

power that has accompanied the quantum revolution. This can be demonstrated using a simple 

cluster of Hydrogen atoms. The Hilbert space for this cluster is given by (𝑛
𝑘

) = 𝑛!/(𝑘! (𝑛 − 𝑘)!), 

which for 20 Hydrogen atoms, each with a single electron, is (40
20

) = 1.37 ∗ 1011 configurations. 

This exponential wall emerges even for relatively small systems and makes exact calculations of 

full crystals or molecules unachievable on classical computing infrastructure. Therefore, 

theoretical models that tackle these quantum systems must strive to find sufficiently accurate 

approximations that are still numerically reasonable to compute. 

One of the most powerful tools for studying quantum many-body systems in modern science 

is spectroscopy. The interaction of light with matter directly probes the behavior of fundamental 

particles (ex: x-rays for absorption, radio waves for nuclear magnetic resonance, infrared light 

for vibrational modes) and provides an ideal testbed for the evaluation of theoretical models. The 
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main focus of this thesis is on improving theoretical descriptions of locally perturbed atomic 

systems as probed by x-ray spectroscopy. These systems often exhibit strong electronic 

correlations, where the assumptions of independent-electron theories break down and many-body 

effects play a dominant role in shaping the observed spectra. To address this, the work 

emphasizes computational approaches that go beyond mean-field approximations, aiming to 

retain physical interpretability while reducing reliance on empirical parameter fitting. These 

improvements directly impact experimental design by enhancing the predictive power of 

commonly used theoretical models and offer a stronger foundation for future theoretical 

interpretation. 

Thesis Organization 

This thesis is organized into 7 chapters as follows: 

• Chapter 1: Introduction and background on x-ray spectroscopy including a brief review 

of experimental and theoretical techniques. 

• Chapter 2: Introduction to Multiplet Ligand Field Theory and the perturbed atomic 

system, with examples and discussion of modern software. 

• Chapter 3: The development of the DFT augment calculation method for the multiplet 

model, which allows for ab-initio determination of most free parameters. 

• Chapter 4: Application of DFT + MLFT to the core-to-core x-ray emission of a range of 

3d transition metal systems, evaluating the augmented multiplet model for a previously 

unexplored spectroscopy 
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• Chapter 5: A deep dive using the augmented multiplet model into the behavior of 

nominally 3d0 systems and the resonant shake effects they can exhibit in the presence of a 

2p core-hole 

• Chapter 6: Exploration of the polarization dependence for core-to-core and valence-to-

core x-ray emission of highly anisotropic single crystal systems. 

• Chapter 7: Conclusion and future directions 
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Chapter 1  Background on X-ray Spectroscopy 

X-ray spectroscopy is a general term which refers to a family of techniques that are used 

for studying materials based on how light in the x-ray regime (energies roughly between 100 eV 

to 100,000 eV) interacts with matter. The origins of x-ray spectroscopy can be approximately 

traced through the first 30 years of the Nobel prize in physics, starting with Wilhelm Röntgen in 

1901 for the discovery of x-rays [1]. The father son pair William Henry Bragg and Lawrence 

Bragg and Maurice de Broglie independently observed the first absorption lines in 1913 while 

studying x-ray diffraction in crystals [2, 3], and the Braggs went on to win a Nobel prize 

(specifically for their work in explaining diffraction patterns) in 1915. Finally in 1924, Manne 

Siegbahn won the prize for providing an almost complete description of the electronic shell by 

studying the characteristic transitions between energy levels via x-ray spectroscopy [4], and it’s 

from him that we get the modern K-, L-, M-edge notation for describing electron transitions. For 

more information about the scientific history of x-ray spectroscopy, see the work by Farrel Lytle, 

The EXAFS family tree: a personal history of the development of extended X-ray absorption fine 

structure [5]. 

1.1 X-ray Absorption Spectroscopy 

The first order process known as x-ray absorption, involves the photoelectric effect [6] 

where a photon is absorbed by a given electron and (assuming the energy of the photon was 

greater than binding energy) kicks the electron out of the atom. This is shown diagrammatically 

on the left side of Figure 1.1. The attenuation of x-rays as they pass through a medium is 

described by the Beer-Lambert law [7] in Eq. 1.1. 

𝐼(𝐸) = 𝐼0(𝐸)𝑒−𝜇(𝐸)𝑑   (𝐄𝐪. 𝟏. 𝟏) 
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 The intensity as a function of photon energy 𝐼(𝐸) is exponentially attenuated from its 

baseline level 𝐼0(𝐸), where 𝜇(𝐸) is the absorption coefficient as a function of energy and 𝑑 is the 

distance through the medium that the beam travels. For most of the x-ray energy regime 𝜇(𝐸) ∝

𝑍4/𝐸3 [8], but near the binding energy of electrons in the medium the absorption coefficient 

spikes up, creating ‘absorption edges’ such as the ones shown in Figure 1.2 (a). Each edge is 

labeled based on the occupied quantum state associated with an excitation, with principal 

quantum number n = 1, 2, 3 corresponding to K, L, and M edges. Within each principal quantum 

number, they are further broken down numerically according to the angular momentum (l) and 

total angular momentum (J) quantum numbers. For example, the L1, L2, and L3 edges correspond 

to the 2s, 2p1/2, 2p3/2 energy levels respectively, where the 1/2 and 3/2 notation is used to denote 

the spin orbit split 2p states. These discontinuities in absorption (specifically the fine structure 

near the edge) hold information about many electronic and chemical properties such as spin, 

oxidation state, coordination number, and bond length.  

 

Figure 1.1: Schematic of the x-ray absorption and non-resonant x-ray fluorescence process. 

Going from left to right, an x-ray (red wiggling line) is absorbed by a core electron (solid blue 
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circle), which is subsequently ejected from the system into the continuum. A short time later a 

less tightly bound electron decays into the hole (dashed blue circle) left behind by the deep core 

electron, emitting an x-ray to preserve energy. 

 The transition probability per unit time (in the limit of 𝑡 → ∞) Γ𝑖→𝑓 from second order 

perturbation theory between an initial and final state (|𝑖⟩ and |𝑓⟩) is given by Eq. 2 [9, 10]. The 𝛿 

function is responsible for energy conservation between the initial and final states by enforcing 

that their difference is equal to the photon energy ℏ𝜔.  

Γ𝑖→𝑓 =  
2𝜋

ℏ
|⟨𝑓|𝐻̂|𝑖⟩|

2
𝛿(𝐸𝑓 − 𝐸𝑖  − ℏ𝜔)    (𝐄𝐪. 𝟏. 𝟐) 

The perturbation, 𝐻̂, comes from the interaction of the electromagnetic field with the 

electronic system and is proportional to exp(−𝑖𝒌 ⋅ 𝒓) 𝝐̂ ⋅ 𝒓, where 𝒌 = 2π/λ is the wavenumber 

of the photon, 𝝐̂ is the polarization vector of the photon, 𝒓 is a position vector in real space [11]. 

The exp(−𝑖𝒌 ⋅ 𝒓) 𝝐̂ ⋅ 𝒓 term can be approximated using a Taylor expansion on the basis that the 

wavelength of the light is much larger than the size of the 1s shell, 𝜆 ≫ |𝒓𝟏𝒔| meaning exp(−𝑖𝒌 ⋅

𝒓)𝝐̂ ⋅ 𝒓 ≈ (1 − 𝑖𝒌 ⋅ 𝒓 + (𝒌 ⋅ 𝒓)𝟐/2 + …)𝝐̂ ⋅ 𝒓. Keeping the first term, 𝐻̂ ≈ (1)𝝐̂ ⋅ 𝒓, provides the 

dipole approximation commonly used in x-ray spectroscopy, and other higher order terms in the 

expansion give quadrupole, octupole, etc contributions. The relative strength of the different 

transitions in the expansion will change with the atomic number Z of the element, and therefore 

the size of the orbitals involved.  However, for transition metals (which are the focus of this 

thesis) the quadrupole transitions are approximately 1/20 the strength of dipole transitions [11] 

and will be ignored unless otherwise specified. 

The observable spectrum 𝐼(𝜔) is shown in Eq. 1.3 and is known as Fermi’s Golden rule 

(see Sakurai, Chapter 2) [10]. Taking K-edge absorption as an example, the sum over final states 
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in Eq 1.3 leads to the golden rule formula 𝐼(𝜔) ∝ 2𝜋/ℏ|⟨𝑝|𝐻̂|𝑖⟩|
2

𝜌𝑝(𝐸𝑖 + ℏ𝜔) where 𝜌𝑝 is the 

angular momentum projected density of states (𝑝 denoting some degenerate set of states) in the 

presence of a core-hole in the final state. 

𝐼(𝜔) ∝ ∑|⟨𝑓|𝐻̂|𝑖⟩|
2

𝑓

𝛿(𝐸𝑓 − 𝐸𝑖  − ℏ𝜔)    (𝐄𝐪. 𝟏. 𝟑) 

Zooming in on a single K-edge, a more complex ‘fine’ structure is observed such as in 

Figure 1.2 (c). This absorption edge shows the spectrum from every allowed excitation of an 

electron from a 1s shell. For K-edge spectra, the region near the beginning of the discontinuity is 

known as the X-ray Absorption Near Edge Structure (XANES) and is usually denoted as 

extending from any pre-edge features out to ~30 eV past the edge. The pre-edge region includes 

localized transitions of the photoelectron between semi-localized orbitals, while above the edge 

the photoelectron is being excited into the continuum [12]. Beyond this, the K-edge spectra ~30 

eV up to 500-2000 eV (depending on atomic number) past the edge is known as the Extended X-

ray Absorption Fine Structure (EXAFS). The exact cutoff between XANES and EXAFS is 

system dependent but is determined by the onset of plasmon excitations which limits the mean 

free path of the photoelectron [13]. The behavior in the region is well understood through the 

EXAFS equation [14] given in Eq. 1.4, where 𝑁𝑗 is the number of equivalent atoms at radial 

distance 𝑟𝑗, 𝜆(𝑘) is the mean free path of the photoelectron, 𝜎𝑗  is the Debye-Waller term which 

accounts for thermal vibrations, 𝛿𝑗(𝑘) is an element dependent phase shift to the scattered 

photoelectron, 𝑓𝑗(𝑘) is the scattering factor, and 𝑆0
2 is a term related to the intrinsic losses that 

come from the relaxation of other electrons in the excited atom. 
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𝜒(𝑘) =  ∑
𝑆0

2𝑁𝑗𝑓𝑗(𝑘)

𝑘𝑟𝑗
2 exp[−2𝑘2𝜎𝑗

2] exp [−
2𝑟𝑗

𝜆(𝑘)
]sin [2𝑘𝑟𝑗 + 𝛿𝑗(𝑘)]

𝑗

    (𝐄𝐪. 𝟏. 𝟒) 

 

Figure 1.2: (a) Absorption edges for Z=26, (b) zoomed in L23-edge to show fine structure (c) 

zoomed in K-edge to XANES and EXAFS structure. 

 While the absorption K-edge is likely the most well studied transition line, the L-edge 

and M-edges can hold additional information, especially when considering that they include 

dipole allowed transitions to the valence level for a wider range of elements. An example of this 

is given in Figure 1.2 (b) which shows the 2p, or L2,3, XAS. The spectrum is split into two main 

peaks which correspond to the spin orbit split 2p3/2 (L3) and 2p1/2 (L2) peaks, with each peak 

further split by many-body interactions coupled to the local environment. This spin orbit splitting 

is an important feature that allows for additional spin and angular momentum information to be 

extracted via x-ray magnetic circular dichroism (XMCD), a technique which exploits the 

difference in absorption from x-rays of left and right helicity [15]. When a magnetic field is 

applied, the spin-up and spin-down DOS become split, and using light of a certain allows them to 

be probed independently. A similar technique which uses linearly polarized light is known as x-

ray magnetic linear dichroism (XMLD) and is used to study magnetic ordering in materials [16, 

17]. Linear dichroism that is present even without a magnetic origin comes from the local 
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crystallographic anisotropy of a material and is called x-ray natural linear dichroism (XNLD) or 

just simple x-ray linear dichroism (XLD) [18]. It can be used to learn about the local symmetry 

of the ligands around an absorbing atom. 

1.2 X-ray Photoemission Spectroscopy 

 While x-ray absorption studies a material by counting the number of photons absorbed at 

a specific energy, x-ray photoemission spectroscopy (XPS) studies the kinetic energy of the 

ejected photoelectrons [19]. The measured energy of the emitted electron is the difference 

between the incoming photon energy (𝐸𝑖𝑛) and the binding energy (𝐸𝑏), 𝐸𝑘 = 𝐸𝑖𝑛 − 𝐸𝑏 − 𝜙, 

where 𝜙 is the work function the describes the energy required for an electron to move from the 

Fermi surface to vacuum (material surface). Electrons have a much high inelastic scattering cross 

section compared to photons, which means that many of the photoelectrons that make it out of a 

material will come from very near the surface. This makes XPS much more surface sensitive 

compared to other x-ray spectroscopy techniques, with a penetration depth on the order of 10 nm 

for most materials. 

 The transition rate for XPS uses the same Fermi’s golden rule as in Eq. 1.2, where the 

final states enforce that the photoelectron gets excited into the continuum so that it can 

eventually be detected. The states |𝑠⟩ and ⟨𝑓| are many-body wavefunctions, and the core-hole 

left behind by the photoelectron can lead to strong many-body effects known as shake 

excitations. This is best understood through the sudden approximation which is the basis of 

modern XPS analysis [20]. This is an extension of the ‘final state rule’ which states that the 

experimentally observed dynamics of a transition are dominated by the final state configuration 

[21]. The sudden approximation uses the fact that the timescale of the photoelectron leaving the 

atom is much faster than the orbital relaxation time, to approximate the creation of the core-hole 
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as ‘instantaneous’. The ionized ground state wave function is not an eigenstate of the ionized 

atom’s Hamiltonian, leading to many-body shake-up or shake-off processes. These in turn are 

observed in the XPS spectra, meaning that the binding energy of the photoelectron reflects that 

of the excited final state configuration. 

1.3 X-ray Emission Spectroscopy 

 The relaxation which follows the creation of a core-hole can happen in two ways: 

radiatively (x-ray emission) or non-radiatively (Auger process) [22]. In both cases energy is 

conserved such that the emitted photon or electron carries an energy equal to the difference 

between the initial and final states of the electron that decays into the core-hole (𝐸𝑒𝑚𝑖𝑡𝑡𝑒𝑑 = 𝐸𝑖 −

𝐸𝑓). For this thesis I will focus exclusively on the x-ray emission process (also sometimes called 

x-ray fluorescence). The full process of core-to-core (CTC) XES involves a core electron 

absorbing a high energy photon, leaving behind a deep core-hole. After a few fs, the core-hole is 

filled by a less tightly bound (shallower) electron, and a photon is emitted, leaving the system in 

a final state with either a semi-core or valence level hole (right side of Figure 1.1).  

A diagram showing the initial, intermediate, and final states for a few common transition 

metal (TM) emission lines is shown in Figure 1.3, reproduced from Glatzel and Bergmann [23]. 

When studied with modest energy resolution, the resulting x-ray fluorescence is commonly used 

for elemental identification [24], but when studied with an energy resolution that is comparable 

to the intrinsic lifetime broadening it can provide more detailed information about electronic, 

chemical, and material properties [25, 26]. For this thesis, I am particularly interested in studying 

the K-shell fluorescence lines, where the intermediate core-hole is in the 1s orbital. The strongest 

of these is Kα, which comes from the 2p to 1s transition. Roughly 20x weaker is Kβ, which 
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comes from 3p to 1s, and finally about 100x weaker are the transitions from the valence level to 

the 1s, often called valence-to-core (VtC) XES. 

 

Figure 1.3: “Simplified energy scheme for K florescence emission. The different radiative decay 

channels of the 1s vacancy give rise to the K fluorescence spectrum. The continuum electron that 

occurs after 1s photoionization is neglected in the intermediate and final states. Atomic 

configurations are used for simplicity.” Figure and caption reproduced from Glatzel and 

Bergmann [23]. 

 

 For 3d transition metals the CTC XES mainly provides information about the spin state 

of the emitting atom. Kα lines show a spin dependence in the full-width half-maximum of the 

Kα1 peak, and Kβ lines show a spin dependence in the strength of in the Kβ’ satellite [23]. The 

physical reasoning behind this will be discussed in Chapter 2, but fundamentally this relationship 

is a product of the Coulomb interaction between the final state core-hole and the valence orbital. 



 

9 
 

The K-shell VtC XES comes mainly from metal and ligand hybridized orbitals that contain p-

character and can be used for ligand identification. VtC transitions are the weakest, but because 

they come from the valence shell they tend to hold the largest amount of information about the 

local environment around the atom. Examples of CtC and VtC XES for multiple transition 

metals is provided in Figure 1.4, reproduced from Gironda et al. [27]. Studying the polarization 

of emitted light in the VtC XES range of a single crystal can provide information about the local 

symmetry, as I will explore in Chapter 6.  
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Figure 1.4: Emission lines measured asymmetrically with a Si(551) analyzer, arranged in order 

of ascending energy, presented with no background subtraction. Figure reproduced from Gironda 

et al. [27]. 
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Sufficient overlap between core and valence levels leads to many-body electronic 

correlations. These are called multiplet effects and they mean that much of the fine structure in 

spectra with deep core-hole final states comes from strong Coulombic electron-electron 

interactions. For 3d TMs, the highly localized nature of the 3d shell means that multiplet effects 

become important even at the 2p-3d level. Properly calculating the multiplet effects will be an 

important part of this thesis, with the exception of VtC XES. Even in 3d TMs, the valence level 

electrons tend to expand and delocalize enough when bonding with neighboring atoms (often 

called ligands) that multiplet effects can be ignored when considering valence to 1s core-hole 

transitions. Functionally, this means that the effect of a hole in the valence shell can be more 

accurately approximated by a mean-field approach, which I will discuss in more detail in section 

1.5. 

1.3.1 One Step Versus Two Step Process 

The resonant inelastic x-ray scattering (RIXS) of a photon is described by the Kramers-

Heisenberg formula [28] shown in Eq. 1.5, where |𝐼〉, |𝑀〉, |𝐹⟩ are initial, intermediate, and final 

N-electron many-body states, with corresponding energies 𝐸𝐼 , 𝐸𝑀, 𝐸𝐹. The broadenings Γ𝑀,  Γ𝐹, 

are due to the lifetimes of the intermediate and final states (not to be confused with the transition 

rates from Eq. 1.2), respectively, and 𝑇̂1, 𝑇̂2, are dipole transition operators. The terms 𝜔1 and 𝜔2 

are the energies of the incoming and outgoing photons, respectively, making 𝜔1 − 𝜔2  the energy 

transferred to the system. For a given initial state, every intermediate and final state that can be 

accessed via the dipole selection rules are summed over. For isotropic spectra, it is also necessary 

to sum over 𝑥, 𝑦, and 𝑧 polarizations of the two dipole operators for a total of 9 combinations. 

The energy denominator within the absolute value squared enforces energy conservation between 

the initial and intermediate states, while the Lorentzian profile (the rightmost fraction) enforces 
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energy conservation between the initial and final states. This representation is slightly different 

than other modern forms of the Kramers-Heisenberg equation [29], but all that I’ve done is 

expand the usual Dirac delta, 𝛿(𝐸𝐼 − 𝐸𝐹 + 𝜔1 − 𝜔2), into a Lorentzian with the same center to 

account for the broadening that comes from the lifetime of the final state. 

𝑑2𝜎(𝜔1, 𝜔2)

𝑑𝜔1𝑑𝜔2
∝ ∑ |∑

〈𝐹|𝑇̂2|𝑀〉〈𝑀|𝑇̂1|𝐼〉

𝐸𝐼 + 𝜔1 − 𝐸𝑀 + 𝑖Γ𝑀/2
𝑀

|

2

𝐹

(Γ𝐹/2π)

(𝐸𝐼 − 𝐸𝐹 + 𝜔1 − 𝜔2)2 + Γ𝐹
2/4

    (𝐄𝐪. 𝟏. 𝟓) 

It should be noted that there is an important distinction between the resonant and non-

resonant emission processes (sometimes called NXES). In the resonant case, the energy of the 

incoming photon is set, and the measured emission spectrum is constrained by the intermediate 

states that can be reached from the incident photon’s energy. This is the case described in Eq. 1.5, 

where the cross section varies as a function of both incident and emission energy.  

For non-resonant XES, the emission spectrum comes from a sample that has been excited 

by a polychromatic incident beam, in which most of incoming photon energy is well above the 

binding energy of the core electron. This means the photoelectron is excited into a high energy 

continuum and can be neglected, making it independent in our intermediate and final state 

wavefunctions. By approximating the continuum density of states and the dipole transition 

amplitude as constant, the incident energy 𝜔1 can be integrated out. A full derivation of these 

steps is provided in Chapter 8, pages 340-341, of de Groot and Kotani’s Core Level Spectroscopy 

of Solids [29], but the resulting form is shown in Eq. 5. The states |𝑚〉, |𝑓⟩ are N - 1 electron 

many-body states which do not include the photoelectron, and Γ𝑚 is assumed to be constant. The 

transition operators are specific to the emission line being studied. However, for K-shell, the 

intermediate core-hole is always in the 1s orbital (𝑇̂1 = 1s), and the polarization term is neglected 
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because the continuum final state of the photoelectron is no longer relevant. The expression in 

Eq. 1.6 only holds for 𝜔1 well above the x-ray absorption threshold, similar to the way that we 

distinguish the pre-edge from the main-line region in XANES.  

𝑑σ𝑋𝐸𝑆(𝜔2)

𝑑𝜔2
∝ ∑ |∑

〈𝑓|𝑇̂2|𝑚〉〈𝑚|𝑇̂1|𝐼〉

𝐸𝑓 − 𝐸𝑚 − 𝜔2 + 𝑖(Γ𝑚 + Γ𝑓)/2
𝑚

|

2

(Γ𝑚 + Γ𝑓)/2π

𝑓

    (𝐄𝐪. 𝟏. 𝟔) 

 While Eq. 1.6 simplifies the final form of the non-resonant XES, from a practical 

perspective it still requires calculating the full 𝜔1, 𝜔2 plane of RIXS only to then integrate over 

on of your axes, which I refer to as the ‘two-step’ process. It is possible to make a further 

approximation by utilizing the ground state in the presence of the intermediate deep core-hole 

instead of calculating every accessible intermediate state. By assuming that the non-resonant 

XES is dominated by emission from this intermediate state Eq. 1.6 can be simplified to the form 

shown in Eq. 1.7, 

𝑑σ𝑋𝐸𝑆(𝜔2)

𝑑𝜔2
∝ ∑ |

 〈𝑓|𝑇̂2|𝑖′〉

𝐸𝑓 − 𝐸𝑖′ − 𝜔2 + 𝑖(Γ𝑚 + Γ𝑓)/2
|

2

(Γ𝑚 + Γ𝑓)/2π

𝑓

     (𝐄𝐪. 𝟏. 𝟕) 

where the relaxed intermediate state is given by |𝑖′⟩, which I refer to as the ‘one-step’ process. 

The physical justification behind this approximation comes from the fact that the valence orbital 

relaxation time (for 3d transition metals) is at least an order of magnitude faster than the deep 

core-hole lifetime, with the relaxation times of the core orbitals being even faster. The orbital 

relaxation times and core-hole lifetimes are nearly linear as a function of atomic number and are 

shown in Figure 1.5. This means that as the valence electrons have plenty of time to re-arrange 

themselves and relax in the presence of the core-hole potential, and it’s reasonable to assume that 

many of the intermediate states that are directly accessed via absorption are not the state that an 
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ionized atom is in immediately before emission occurs. To perfectly model this process, 

additional relaxation channels like plasmon and phonon processes that carry energy away from 

the excited atom [30] would need to be considered. However, this relaxed intermediate 

approximation is already successfully applied [31, 32] by the spectroscopy community, and I will 

demonstrate in Chapter 3 its validity for K-shell emission of 3d transition metal systems. 
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Figure 1.5: “Ionization, relaxation, and x-ray excited-state times for the atomic numbers and 

shells indicated. The ionization time is taken to be the time required for an electron with the 

indicated kinetic energy to travel two angstroms. Relaxation times and lifetimes are plotted 

against the kinetic energy of the electron in the atomic orbitals indicated”. Figure and Caption 

reproduced from Nagel’s Interpretation of Valence Band X-ray Spectra [33]. 

1.4 Experimental Instrumentation 

 This thesis is primarily focused on the study of methods for calculating x-ray emission 

spectra, and for comparison, many compounds were experimentally measured in a lab-based 

setting. While this setup differs somewhat from the traditional synchrotron setup, the 

fundamental principles are still the same [34]. All spectra presented in this thesis were measured 

by either myself or my collaborators at the University of Washington and easyXAFS LLC, unless 

otherwise mentioned. Extensive details of the instrument used can be found in Jahrman, et al. 

[35], but I will briefly summarize it here. 

 To get a high-resolution spectrum of the transition metal K-shell fluorescence, the 

emission was measured using a crystal analyzer arranged in a Rowland circle geometry, shown 

in figure 1.6. The sample is illuminated with a conventional x-ray tube (Varex VF80, Pd-Anode) 

operated at 100 W electron beam power (35 kV, 2 mA). The sample and detector are arranged in 

the Rowland plane allowing for point-to-point focusing, limited only by the size of the entrance 

slit [36]. This is a Johann type spectrometer, the focal properties of which have already been well 

studied in previous work [37, 38]. By scanning the sample and detector through 𝜃, the energy of 

the focused beam that reaches the detector is changed according to Bragg’s law in Eq. 1.8 [39].  

2𝑑 sinθ = 𝑛𝜆    (𝐄𝐪. 𝟏. 𝟖) 
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 The Bragg angle 𝜃 is the angle the incident x-rays make with the crystal plane, 𝑑 is the 

spacing of the crystal planes, and 𝜆 is the wavelength of the x-rays. Bragg’s law assumes only a 

single scattering event, and multiple scattering diffraction can lead to broadening of the reflected 

x-rays [40]. However, this effect is relatively small compared to the other sources of 

experimental broadening (on the order of 0.1 eV) [23], and I will neglect it for the purposes of 

determining the appropriate experimental broadening. By using a suite of high-quality silicon 

and germanium crystals to create the spherically bent crystal analyzer (SBCA), it’s possible to 

measure x-rays at a wide range of relevant energy for transition metal systems, from roughly 1 

keV to 10 keV [27]. 

 

Figure 1.6: The lab-based Rowland-circle spectrometer. The slit in front of the sample provides a 

finite sized source with angular width of 𝛿𝜃𝐵, assuming the illuminated portion of the sample is 
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large enough to completely fill the slit. The sample is slightly rotated (ϕ) to allow improved line-

of-sight to the SBCA. Reproduced from Mortensen et al, 2016 [41] 

1.4.1 Source Size Broadening 

 The experimental broadening can be separated into 2 main sources: source size and 

Johann broadening, both of which are geometric. Source size broadening comes from the finite 

sized entrance slit, which cannot be approximated as a perfect point source. The amount of 

source size broadening depends on the x-ray energy (𝐸0), radius of the Rowland circle (𝑟), slit 

width (𝑑𝑠) and Bragg angle (𝜃𝐵) of the specific experimental setup. A derivation of the source 

size broadening is shown in Figure 1.7, where in (a) the center of the source slit lies on the 

Rowland circle at (𝑠𝑥, 𝑠𝑦) and the vector 𝜌⃗ defines the chord from the top of the Rowland circle 

to the source slit. For convenience, 𝜙𝐵 is defined to be 90∘ minus the Bragg angle 𝜃𝐵. (b) The 

source slit has some finite width 𝑑𝑠. The vectors 𝑠𝐿 and 𝑠𝑅 define the line from the top of the 

Rowland circle to the left and right edges of the slit respectively. The range of energies allowed 

in by the slit is shown in (c). The Bragg condition is 𝐸 = 𝐸𝑜/𝑆𝑖𝑛(𝜃) where 𝐸𝑜 depends on the 

specific crystal plane and analyzer. Using the minimum (90∘ − 𝜙𝐿) and maximum (90∘ − 𝜙𝑅) 

Bragg angles the energy window Δ𝐸 associated with the finite source size can be calculated. For 

simplicity, the source slit can be approximated to be much smaller than the radius of the 

Rowland circle, 𝑑𝑠 ≪ 𝑟, which gives a much simpler expression. Subplot (d) shows a plot of the 

energy window Δ𝐸 for various Bragg angles with an 𝐸𝑜 of 8000 eV, slit width of 1 millimeter, 

and Rowland circle radius of 1 meter. Notice how Δ𝐸 approaches zero at backscatter. Subplot (e) 

shows a plot with the same 𝐸𝑜 and Rowland circle radius as (d) but this time the Bragg angle is 

set to 75∘ and the slit width is allowed to vary. Here the slit width is sufficiently smaller than the 

Rowland circle radius, causing Δ𝐸 to be linearly related to 𝑑𝑠 in agreement with the final 
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equation from (c). The approximate form of Δ𝐸 shown in (c) breaks down when approaching 

backscatter (𝜙𝐵 → 90∘). The source size broadening rapidly approaches zero, demonstrating why 

there is often much effort put in to operating near backscatter whenever possible [42]. 

 

 

Figure 1.7: Derivation of the broadening Δ𝐸 that comes from a finite source size. Subplots (a) 

and (b) give a diagram of the 2-dimensional slit with width 𝑑𝑠, centered at (𝑠𝑥, 𝑠𝑦), and oriented 

to be perpendicular to the cord running from the top of the Rowland circle to the slit center 𝜌⃗. (c) 

Steps for deriving the broadening Δ𝐸 given the angular width of the slit as 𝜙𝑅 − 𝜙𝐿 and Bragg’s 

law in Eq 7. (d) and (e) show the source size broadening for a given experimental setup for 

variable Bragg angles and slit widths respectively. 
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Figure 1.8: “XRT ray traced simulation of a Si(551) operated symmetrically far from backscatter, 

demonstrating Johann error as lower diffracted energies on the left and right sides of the crystal” 

Figure and caption reproduced from Gironda et al. [27]. 

1.4.2 Johann Broadening 

 Johann broadening is a result of the how the spherically bent crystal analyzer (SBCA) is 

experimentally implemented within the Rowland circle geometry of an x-ray spectrometer [43], 

shown in Figure 1.9. For perfect point to point refocusing the Bragg condition from equation Eq. 

1.8 must be the same at every point on the analyzer, but this can only be achieved by bending the 
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analyzer to have twice the radius of the Rowland circle and then grinding it down so that the face 

of the analyzer matches the curvature of the circle. This is known as the Johannson geometry 

[44], and while it provides the most ideal experimental operating conditions, the economics and 

practical difficulty of manufacturing such crystal analyzers means that most x-ray spectrometers 

operate using the conventional Johann geometries. The error introduced by a Johann 

configuration is an asymmetric broadening in energy which gets worse when further away from 

backscatter, as demonstrated with ray tracing in Chen et al [45]. An example of this is shown in 

Figure 1.8 where the x-rays reflected from the center of the analyzer (dark purple) have no 

energy shift, but moving towards the edge of the analyzer the source to detector Bragg condition 

requires a larger Bragg angle and energy of the reflected rays decreases in energy (𝐸 ∝

1/sin (𝜃)). The exact form of this asymmetric broadening depends on the Bragg angle, energy of 

radiation, and source size but it can be mitigated by operating at a high Bragg angle as much as 

possible. 
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Figure 1.9: Rowland circle diagram with a crystal analyzer in the Johann configuration. The 

analyzer is bent to a radius of twice the Rowland circle, but gaps between the circle and the 

analyzer get larger away from the center and give a different Bragg condition (𝜃𝐵 + 𝛿) for the 

source to detector refocusing.  

 The experimental XES presented in this thesis were taken with a spectrometer 

configuration optimized for high Bragg angles and small source sizes (0.5 mm for data taken at 

UW and 0.25 mm for data taken at easyXAFS). The two experimental broadening sources I have 

mentioned so far are important for ruling out sources of error for later sections where I will 

directly compare theory and experiment. However, I have found that it is sufficient to 

approximate the line shape of the experimental broadening as a simple Gaussian with width 

between 0.5 and 1.0 eV depending on the experiment [11]. This, in combination with lifetime 

broadening provides a good, if somewhat simplified, method for broadening raw theoretical 

spectra for comparison with experiment, as I will demonstrate in Chapter 4. 

 

1.5 Theoretical Methods in X-ray Spectroscopy 

Depending on the system and spectroscopy in question, different levels of theory and 

approximation are required for accurately calculating these wavefunctions. The focus of this 

thesis will be on multiplet methods specifically for 3d transition metals, which I will discuss in 

extensive detail in Chapter 2. Here though I will provide brief context as to other common 

approaches to determining the electronic structure of a material for calculating spectra. The 

following is by no means an exhaustive list, but a brief overview of techniques that are 

connected to work in this thesis. 
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1.5.1 Density Functional Theory 

Density Functional Theory (DFT) is perhaps the most well-known method in 

computational condensed matter and quantum chemistry. While on its own it is strictly a ground-

state method, it is often used in conjunction with other techniques to provide a starting point for 

spectroscopy calculations. DFT is used for that exact reason in this thesis, and so I will cover it 

in detail here. 

DFT has its origins in early work on the statistics of electron gases done by Thomas and 

Fermi [46], modern DFT is rests on the work of Hohenberg, Kohn, and Sham. The Hohenberg-

Kohn theorems form the theoretical foundation for DFT by asserting that (1) the ground-state 

energy of a system is unique functional of the electron density 𝝆(𝒓), Eq. 1.9, and (2) the ground-

state energy corresponds to an electron density that minimizes this energy functional [47]. 

Functionally, this provides a massive simplification over wavefunction based approaches given 

an N electron problem can be reformulated into a functional of the electron density with only 3 

spatial degrees of freedom. The density can be used to determine all terms within the 

Hamiltonian (up to a constant), meaning that there is a one-to-one mapping between the electron 

density and the wavefunctions of an N-electron system.  

𝝆(𝒓) = 𝑵∫ 𝚿∗(𝒓, 𝒓𝒊, … , 𝒓𝑵)𝚿(𝒓, 𝒓𝒊, … , 𝒓𝑵)𝒅𝒓𝒊 … 𝒅𝒓𝑵    (𝐄𝐪. 𝟏. 𝟗) 

A method for putting these theorems into practice comes through the use of a non-interacting 

reference system as demonstrated by Kohn and Sham [48]. The classical Coulomb (𝑱[𝝆(𝒓)], 

sometimes called the ‘Hartree’ term) and exchange-correlation (𝑬𝑿𝑪[𝝆(𝒓)]) are separated out 

from the kinetic (𝑻𝒔[𝝆(𝒓)]) and nuclear potential (𝑽𝑵(𝒓)) terms of the density functional as 

shown in equation Eq. 1.10.  
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𝐸[𝜌(𝑟)] = 𝑇𝑠[𝜌(𝑟)] + 𝐽[𝜌(𝑟)] + 𝐸𝑋𝐶[𝜌(𝑟)] + ∫ 𝑉𝑁(𝑟)𝜌(𝑟)𝑑𝑟    (𝐄𝐪. 𝟏. 𝟏𝟎) 

Kohn and Sham use the variational principle to demonstrate that a corresponding system with no 

electron-electron interactions but the same density 𝝆(𝒓) from an external potential 𝑽𝒆𝒇𝒇(𝒓) is 

equivalent to the interacting case if 𝑽𝒆𝒇𝒇(𝒓) = 𝒆𝟐/(𝟒𝝅𝝐𝟎) ∫ 𝝆(𝒓)/(𝒓 − 𝒓′)𝒅𝒓′ + 𝑽𝑿𝑪(𝒓) +

𝑽𝑵(𝒓), where 𝑽𝑿𝑪(𝒓) = 𝜹𝑬𝑿𝑪/𝜹𝝆(𝒓). The important takeaway is that by using an effective 

potential the solutions to the Schrödinger equation (Eq. 1.11) provide a single-particle 

description of a many-electron system. The eigenfunctions of Eq. 1.11 are known as the Kohn-

Sham orbitals and they provide a basis for determining the density from Eq. 1.8, assuming some 

temperature dependent occupation [46]. This can then be used to recalculate the effective 

potential 𝑽𝒆𝒇𝒇(𝒓) in a self-consistent loop, providing the energy and density of the ground state. 

[
𝛁𝟐

𝟐
+ 𝑽𝒆𝒇𝒇(𝒓)] 𝝍𝒊(𝒓) = 𝝐𝒊𝝍𝒊(𝒓)    (𝐄𝐪. 𝟏. 𝟏𝟏) 

 This method conveniently brushes the combinatoric complexity of large N-electron 

systems into the exchange-correlation (XC) functional 𝑬𝑿𝑪[𝝆(𝒓)]. Many different functionals 

exist with two of the most common being the local-density approximation (LDA) and 

generalized gradient approximation (GGA). These are both derived from a reference system (the 

homogenous electron gas), which assumes that the electron density 𝝆(𝒓) is constant throughout 

space. As their names suggest, these XC functionals are only semi-local approximations and they 

fail to fully cancel the self-interaction introduced from the Hartree term. This leads to electrons 

interacting with their own density and causing an over delocalization of the electron density. 

More advanced hybrid functionals can include a fraction of the Hartree-Fock exchange to try to 

compensate for this, and there are entire families of functionals dedicated to better approximating 

the exchange-correlation for different systems [49, 50]. However, DFT generally fails when 
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dealing with highly correlated systems with more localized electrons, which is a large focus of 

the work in this thesis. There are many systems though the electrons near the Fermi level are 

already relatively delocalized compared to atomic systems, and DFT can do a good job at 

predicting the density of states, band structures, optimized molecular structures, and other 

ground state properties for these materials. 

 While DFT is designed for ground-state calculations, it has seen extensive application to 

valence level spectroscopies such as for calculating the pre-edge in XAS or VtC-XES [51, 52]. 

By solving a time-dependent version of the Kohn-Sham equations [53] a modified version of 

DFT, known as time-dependent DFT (TD-DFT) can determine the response of the density to an 

external time-dependent potential. This approach was built off a 1984 paper by Runge and Gross 

[54], who showed that a time dependent single-particle potential will uniquely determine a time 

dependent density much the same was as Hohenberg and Kohn did for static DFT. This approach 

is relatively widespread and implemented in electronic structure codes such as NWChem [55] and 

ORCA [56]. 

1.5.2 Real Space Green’s Function Methods 

The single particle Green’s function 𝑮(𝒓, 𝒓′; 𝑬) is defined in Eq. 1.12 and gives the 

relative probability amplitude for an electron to propagate from 𝒓 to 𝒓′ at energy 𝑬 for a given 

effective one-electron Hamiltonian 𝑯. The term 𝚪 is a small positive number that helps enforce 

physical solutions. Codes like FEFF have been used for efficiently calculating XANES, EXAFS, 

XES, XMCD, and non-resonant inelastic x-ray scattering (NIXS) via within the real-space 

multiple-scattering Green’s function formalism [57]. The Green’s function itself can be used to 

efficiently describe how electrons scatter from nearby atoms in aperiodic systems, while the 

imaginary part is related to the local density of states. Spectroscopic quantities can be calculated 
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from the Green’s function in much the same way as Eq. 1.3 and Eq. 1.4 (this will be addressed in 

more detail in the supplemental info of Chapter 4).  

𝑮(𝒓, 𝒓′; 𝑬) = ⟨𝒓|(𝑬 − 𝑯 + 𝒊𝚪)−𝟏|𝒓′⟩    (𝐄𝐪. 𝟏. 𝟏𝟐) 

The one-electron nature of the Green’s function is treated by the exchange-correlation 

effects with an LDA functional. This means that it has the same sort of limitations when it comes 

to core-level spectroscopies in highly correlated systems as TDDFT has. Regardless of this, the 

full multiple scattering approach is critical for reproducing the photoelectron’s behavior in 

XANES and EXAFS, and codes like FEFF have been massively successful at interpreting 

experimental results [58-60] and creating machine learning datasets [61-63]. 

1.5.3 Multireference Wavefunctions 

Multireference methods represent many body states using a linear combination of Slater 

determinants to explicitly describe the different excited state configurations [64]. The energy of 

the states is solved by simultaneously optimizing the coefficients on the Slater determinants and 

the molecular orbitals in a self-consistent manner. When this is done for a certain subset of 

partially filled orbitals it is known as Complete Active Space Self-Consistent Field (CASSCF).  

While this method is one of the most sophisticated ways to treat electronic structure, in practice 

it is very computationally expensive, and it only applicable to small particle number (n) systems. 

Restricted Active Space Self-Consistent Field (RASSCF) is more suitable for treating larger 

systems by placing restrictions on the number of excitations in the subset of orbitals. For x-ray 

spectroscopy of singly excited core-states, this is ideal, but for highly correlated 3d systems a 

more complete treatment of the allowed excitations is often necessary. While this approach has 

been implemented in many codes [56, 65, 66], it has only recently been applied to core-level 
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spectroscopies [67]. The choice of the active space is incredibly important as the type of allowed 

excitations, e.g. spin-flip, shake-up, charger transfer, will depend on which orbitals are included. 

This method also allows the ligand electrons to be treated directly within the molecular orbital 

framework. Active space methods which include the metal 3d, metal core-hole, and ligand 

electrons correspond to a self-consistent treatment of the electrostatic and charge transfer effects 

that I will discuss in Chapter 2. 

Other methods include configuration interaction (CI), which uses the Hartree-Fock states 

as single-particle orbitals and constructs excited configurations as linear combinations of the 

Hartree-Fock ground states [68]. Full CI includes all possible configurations with the correct 

symmetry for a given system, but often the CI space is truncated by limiting the number of 

allowed excitations to reduce computational cost. CI naturally captures multiplet effects in 

partially filled shells, as the mixing of determinants with different spin and orbital occupations 

reproduces the energy splittings observed in strongly correlated systems. Finally, a related but 

distinct method called coupled cluster (CC) builds the wavefunction using an exponential ansatz 

of excitation operators acting on a single reference determinant [69]. Unlike CI, which uses a 

linear combination of determinants, CC captures dynamic correlation in a size-extensive and 

highly accurate manner [70]. 
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Chapter 2  Multiplet Ligand Field Theory 

2.1 History and Background 

I will begin by clarifying some of the terms used in MLFT. The term “multiplet” is 

generally used to describe a grouping of electrons, and “multiplet interactions” or “multiplet 

splittings” are a result of the electron-electron Coulomb interactions within that electron group. 

Both “multiplet states” and “multiplet configurations” refer to the specific arrangement of 

electrons in terms of spin-orbital occupation. I will use the term “state” to describe a specific 

arrangement of electrons, and “orbitals” to describe which fermionic modes (ex: px spin-up, dxy 

spin-down) are being occupied. Naturally multiplets only become important when describing 

partially filled shells, as the contribution of the Coulomb interaction to the total energy changes 

depending on the state of the system. Close shell systems (ex: Ne 1s22s22p6) can only be 

described by a single configuration and multiplet effects become moot. Phenomena such as 

Hund’s rule [71] which govern how electrons fill the atomic shells are a product of multiplet 

effects, which penalize certain electron configurations (e.g. two electrons occupying the same 

orbital) with an energy cost. The term “crystal field” and “ligand field” are used somewhat 

interchangeably in literature [29, 72], but both refer to the perturbation on the valence level 

orbital from a static charge model of nearby ligands. I will use the term “crystal field” 

exclusively to address this perturbation. 

 Multiplets play a critical role in core-level spectroscopy because they treat the many-

body electron-electron interaction between the partially filled core and valence levels. 

Practically, the energies of these configurations are framed through the Slater-Condon terms, 

which I will address in the next section. The multiplet combinatorics of even medium sized 
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systems quickly becomes difficult to deal with. For example, a single Mn atom has a partially 

occupied 3d shell, with 5 d electrons and 5 holes. The total number of unique configurations is 

10 choose 5, or 
𝟏𝟎!

𝟐∗𝟓!
= 𝟐𝟓𝟐. On its own this isn’t too bad, but to model a system of just 2 Mn 

atoms all interacting with each other (such as a solid), that would be 
𝟐𝟎!

𝟐∗𝟏𝟎!
= 𝟏𝟖𝟒𝟕𝟓𝟔 

configurations. The number of configurations goes up another 3 orders of magnitude when you 

add the next Mn atom. This exponential scaling is part of what makes mean field approaches so 

attractive, because they don’t have to deal with an explicit treatment of the electron behavior. It 

is for this reason that multiplet approaches tend to treat systems as perturbed atomic clusters, 

where we focus only on the local effects around the atom of interest.  

In purely atomic systems, many configurations are degenerate in energy and it’s not until 

we start to add in crystal field (section 2.3) and charge transfer (2.4) effects that this degeneracy 

begins to be broken down. The strength of these local perturbations, as well as how the energies 

of the atomic multiplets change due to valence level bonding, are all parameterized as a part of 

MLFT. This means that for any system, the model can be adapted to match the specific local 

bonding environment to produce a good agreement with any physical observables (e.g. x-ray 

spectra). This has contributed broadly to the popularity of MLFT, and it is one of the most widely 

used theory methods for treating core-level spectroscopies of highly correlated systems [31, 67, 

73].  

However, MLFT has two main drawbacks. 1) The popularity of the technique is partially 

because the many parameters allow for the calculated spectra to be fit to the spectra. These fits 

generally agree well with experiment, but the large parameter space means that it can be difficult 

to confidently determine the “best” combination of parameters. This means that there are many 
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potential pitfalls, where small changes in broadening, alignment shifts, or even the choice of 

starting local geometry can lead to different fitting parameters being published for the exact same 

material and spectra. An example of this is shown in Figure 2.1 where for the Ni L2,3 XAS, 3 

different spectra are shown, each one corresponding to a calculation done assuming a different 

local geometry around the Ni atom. The same broadening (1 eV FWHM Lorentzian broadening) 

and alignment shift (main L3 peak shifted to 0 eV) are applied to every spectrum. I have 

explicitly chosen parameters which demonstrate just how similar MLFT calculated spectra can 

be, even for systems for which the local geometry is very different. In this specific example only 

atomic and crystal field perturbations are considered, but only 2 to 4 free parameters is enough to 

produce theoretical spectra which are barely experimentally resolvable. These spectra, along with 

all other core-to-core spectra presented in this thesis were calculated using the many-body 

scripting code Quanty [74], unless otherwise mentioned. The key point here is that it is 

remarkably easy for two people to obtain essentially the same spectrum using different 

parameters when both are working within the MLFT framework. This has led to incorrect 

physical interpretation of spectra in past work [75, 76]. 
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Figure 2.1: Calculated Ni L2,3 x-ray absorption for 3 different local geometries (Oh, D4h, C3v). 

The Slater-Condon scaling parameter and crystal field splittings for each system are reported in 

the plot. 

 2) The second main drawback comes from the fact that MLFT relies on parameters at all. 

This dramatically limits the application of the theory to being restricted to interpretive tasks 

instead of predictive ones. While not exclusively, many x-ray spectroscopy methods rely on 

expensive and state-of-the-art facilities to collect data. Given the limited access to this technique, 

having a reliable method of predicting spectra is imperative to informing new experimental 

directions, as good theory can help confirm novel results, highlight experimental issues, and even 

predict potential systems of interest. Groups from any discipline that are interested in studying 

core-level spectroscopy of highly correlated materials can’t rely on MLFT until after they’ve 

already gone through the work of measuring a spectrum, and then they must trust that whatever 

fit they get to their data provides a reliable interpretation of the underlying physics. For good 

reason, these two issues limit the widespread adoption of this theory, and this is why there is a 

need for new development of a more reliable and more ab-initio version of MLFT. The details of 

that new development will be discussed in section 3. 

2.2 Atomic Beginnings 

The Hamiltonian which describes an atomic system in the Born-Oppenheimer 

approximation is given in equation Eq 2.1, where the first term denotes the kinetic energy of 

electron 𝑖, the second term is the nuclear potential, the third term is the electron-electron 

Coulomb term between every pair of electrons 𝑖𝑗, and the last term is the spin-orbit coupling 

[77]. The prefactor 𝜁(𝑟𝑖) is an element and orbital specific constant, but it changes very little 

with changes in bonding environment and therefore can be treated as a constant. The terms 
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which dominate the fine-structure of any core spectroscopy are the Coulomb and spin-orbit 

coupling, with the single-particle kinetic and nuclear potential only contributing and overall shift 

to the energy of the system. Most of the interesting physics that dominates multiplet theory 

comes from the treatment of the Coulomb term, which thanks to the work of Slater in 1929 [78] 

and Condon in 1930 [79] this term can be broken up into angular and radial components for 

efficient evaluation. 

𝐻 = ∑
𝑝𝑖

2

2𝑚
𝑖

− ∑
𝑍𝑒2

𝑟𝑖
𝑖

+
1

2
∑

𝑒2

|𝑟𝑖 − 𝑟𝑗|
𝑖≠𝑗

+ ∑ 𝜁(𝑟𝑖)𝑙𝑖 ⋅ 𝑠𝑖

𝑖

   (𝐄𝐪. 𝟐. 𝟏) 

The Coulomb term can be rewritten in second quantization to have the form shown in 

equations Eq. 2.2 and 2.3, where 𝜏𝑖 = 𝑛𝑖𝑙𝑖𝑚𝑖𝜎𝑖 labels a set of quantum numbers. By expanding 

the 1/|𝑟𝑖 − 𝑟𝑗| term in spherical harmonics, the angular and radial integrals can be separated. The 

angular component is just a product of two Gaunt coefficients [80], which are straightforward to 

calculate and well tabulated. The radial term can be further separated into the direct (𝐹) and 

exchange (𝐺) Slater integrals [77, 81] which are shown in equations Eq. 2.4 and 2.5. Within an 

orbital, there are only direct terms with Slater integrals 𝐹(𝑘) where 𝑘 goes from 0 to 2𝑙 in steps of 

2 (ex: for a 3d orbital, the Slater integrals are 𝐹0, 𝐹2, and 𝐹4). Between orbitals the direct Slater 

integrals are counted going from to 0 to 𝑀𝑖𝑛[2𝑙1, 2𝑙2] in steps of 2, and the indirect Slater 

integrals, 𝐺(𝑘), go from |𝑙1 − 𝑙2| to |𝑙1 + 𝑙2| in steps of 2 (ex: there are four Slater integrals 

between a 2𝑝 and 3𝑑 orbitals; 𝐹0, 𝐺1, 𝐹2, 𝐺3). 

𝐻 =
1

2
∑

𝑒2

|𝑟𝑖 − 𝑟𝑗|
𝑖≠𝑗

= ∑ 𝑈𝜏1𝜏2𝜏3𝜏4
𝑎̂𝜏1

† 𝑎̂𝜏2

† 𝑎̂𝜏3
𝑎̂𝜏4

 

𝜏1𝜏2𝜏3𝜏4

  (𝐄𝐪. 𝟐. 𝟐)  
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𝑈𝜏1𝜏2𝜏3𝜏4
= −

1

2
𝛿𝜎1,𝜎3

𝛿𝜎2,𝜎4
∑

4𝜋

2𝑘 + 1
⟨𝑌𝑚1

𝑙1 |𝑌𝑚1−𝑚3
𝑘 |𝑌𝑚3

𝑙3 ⟩⟨𝑌𝑚4

𝑙4 |𝑌𝑚4−𝑚2
𝑘 |𝑌𝑚2

𝑙2 ⟩

∞

𝑘

× 𝑅𝑘[𝜏1𝜏2𝜏3𝜏4]   (𝐄𝐪. 𝟐. 𝟑)  

𝑅𝑑𝑖𝑟𝑒𝑐𝑡
𝑘 = 𝐹(𝑘) = 𝑒2 ∫ ∫

𝑀𝑖𝑛[𝑟𝑖, 𝑟𝑗]
𝑘

𝑀𝑎𝑥[𝑟𝑖, 𝑟𝑗]
𝑘+1 𝑅1[𝑟𝑖]

2𝑅2[𝑟𝑗]
2

𝑑𝑟𝑖𝑑𝑟𝑗

∞

0

∞

0

     (𝐄𝐪. 𝟐. 𝟒) 

𝑅𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒
𝑘 = 𝐺(𝑘) = 𝑒2 ∫ ∫

𝑀𝑖𝑛[𝑟𝑖, 𝑟𝑗]
𝑘

𝑀𝑎𝑥[𝑟𝑖, 𝑟𝑗]
𝑘+1 𝑅1[𝑟𝑖]𝑅1[𝑟𝑗]𝑅2[𝑟𝑖]𝑅2[𝑟𝑗]𝑑𝑟𝑖𝑑𝑟𝑗

∞

0

∞

0

   (𝐄𝐪. 𝟐. 𝟓)  

The radial wave function can be solved for with a self-consistent Hartree-Fock approach 

using Cowan’s code [82], which gives decent agreement between theory and experiment for 

atomic spectra [83]. However, in solids the radial wavefunctions will change due to bonding, 

leading to less overlap in what is known as the nephelauxetic effect. The electron-electron 

repulsion is effectively screened by the delocalization of electrons and states that are not 

explicitly included in this model. The average screened electron-electron interaction can be 

written as 𝑈𝑑𝑑 = 𝐹0 −
2

63
(𝐹2 + 𝐹4) [81]. However, this screening primarily affects the 

monopole component of the Coulomb interaction, 𝐹0, which can go from ~20 eV for a free atom 

to ~5 eV in a solid [84]. The 𝐹2 and 𝐹4 multiplet terms change much less and are frequently 

modeled as being reduced by some constant scalar from their atomic values. Often the Slater-

Condon scaling parameter is taken factor is taken to be ~0.8, but in practice it is a parameter that 

can tweaked when fitting to experiment [31, 85, 86]. An example of how varying this parameter 

affects a spectrum is shown in Figure 2.2 for the 2p-XAS of Ni in NiO. At low scaling (0.2) the 

spectra is comprised entirely of the spin-orbit coupling within the 2p shell, and when the scaling 

factor is closer to atomic values the fine structure that comes from the interaction between the 2p 
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core-hole and the 3d shell causes features to emerge. The atomic scaling factor for the multiplet 

interaction works reasonably well for charge neutral spectroscopies (ex: 2𝑝 to 3𝑑 XAS), but once 

charge begins transferring too and from the metal ion, the screened average Coulomb term 𝑈𝑑𝑑 

becomes much more important, as will be addressed in section 2.4. 

 

 

Figure 2.2: The Ni L2,3 XAS for different strengths of multiplet coupling relative to atomic 

calculations. 

The different effects on the L-edge spectrum are illustrated in Figure 2.3. No onsite/single 

particle energies are included for the p and d orbitals, but I have shifted each spectrum so the 

peak intensity lies at 0 eV. In subplot (a), all Slater-Condon integrals, spin-orbit, and crystal field 

interactions are turned off. This leads to the trivial result of only one transition at 0 eV. Once 

spin-orbit coupling within the 2p shell is turned on in subplot (b), this peak separates into 2p3/2 
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(L3) and 2p1/2 (L2) contributions, but the peaks remain perfectly symmetric. In subplots (c) and 

(d) the (2p, 3d) and (3d, 3d) Slater-Condon interactions are turned on and the peaks separate into 

different multiplet contributions, generally described as “fine-structure”. 2p core level 

spectroscopies of 3d transition metal systems are generally dominated by the large spin-orbit 

splitting, but at the 3p level the spin-orbit contribution is much weaker (roughly 10% that of the 

2p term for the same element) and the large Coulomb exchange between the 3p and 3d orbitals 

instead dominates the spectra [85]. The 3d spin-orbit coupling is omitted from this example 

because it is not experimentally resolvable (on the order of 0.05 eV), but in practice should be 

included in any full multiplet calculation for the sake of completeness. Finally in subplot (e) the 

crystal-field is turned on which splits 3d orbitals into eg and t2g levels for the Oh coordinated 

NiO. This is a single-particle contribution and has the weakest overall effect on the spectra 

compared to the multiplet terms, but it is still necessary to include when fitting to experimental 

spectra with different local symmetries.  
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Figure 2.3: Ni L2,3 XAS based on atomic multiplet and crystal field theory. (a) All interactions 

are turned off and the spectrum is comprised of a single peak. (b) 2p spin-orbit coupling leads to 

two transitions which make up the L2 and L3 main peaks. (c, d) the (2p, 3d) and (3d, 3d) integrals 

from Eq. 2.3 are set to 80% their atomic values, leading to the emergence of fine structure. (e) 

The Oh crystal field parameter 10Dq is set to 1 eV to incorporate the local electrostatic 

environment of NiO. 
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2.3 Crystal Field Theory 

 

 

Figure 2.4: Crystal field energy diagram for Octahedral (Oh), free ion, Tetrahedral (Td), and 

Square-planar (D4h) point group symmetries. 

Crystal field theory was first developed by Hans Bethe in 1929 [87], and it described the 

electric field made up of point charges in place of the ligands which surround an atom. For most 

transition metal compounds, the ligands are negatively charged and the effect of the crystal field 

on the spectra comes from the symmetry of the ligands and the strength of their effective fields. 

An example of this is shown in Figure 2.4 where crystal field split d-orbitals are shown for 

different local geometries, often denoted by point groups [88]. In general, the more symmetry 

operators which a cluster obeys, the fewer individual levels the d-orbitals are split up into, with 
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Oh and Td being examples of relatively high symmetry and D4h and C3v being examples of 

relatively low symmetry clusters. 

𝐻𝐶𝐹 = ∑ ∑ 𝐴𝑘,𝑚⟨𝑌𝑙1,𝑚1
|𝐶𝑘,𝑚|𝑌𝑙2,𝑚2

⟩𝑎̂𝜏1

† 𝑎̂𝜏2

𝑘,𝑚𝜏1,𝜏2

     (𝐄𝐪. 𝟐. 𝟒) 

The crystal field Hamiltonian is given in equation Eq. 2.4, where the 𝐴𝑘,𝑚 are related to 

the effective potential created by the ligand point charges and are taken as fitting parameters 

when calculating spectra. In practice, the strength of the crystal field is on the order of 0.1 to 2.0 

eV, where a strong crystal field can lead to larger splittings between the different d-orbitals, 

enough to even violate Hund’s rule [71]. An example of this, and the effect it has on a 

hypothetical Mn(2+) Kβ x-ray emission spectra is shown in Figure 2.5. In the case of Oh 

symmetry, the d-orbitals split into 2 eg and 3 t2g orbitals, and if the crystal field effect is large 

enough the electrons will preferentially fill the 3 t2g orbitals first. This is because the energy cost 

of putting an electron into the eg orbital is higher than the Coulomb repulsion energy cost from 

having two electrons occupy the same magnetic angular momentum orbital, leading to a low-spin 

configuration. Conversely, in the high-spin case, the crystal field splitting is weak enough that 

Coulomb repulsion still determines the configuration. This high-spin and low-spin behavior gets 

“communicated” to the core orbitals via the Coulomb exchange coupling. In the case of 3p-XES, 

the overlap between the 3p and 3d states is quite strong (Slater-Condon terms on the order of 15 

eV). This leads to a large splitting between the configurations where, in the final state, the 

unpaired 3p electron is spin-aligned versus spin-opposed to the net spin of the valence level [31], 

and results in a distinct satellite feature known as the Kβ’ [89]. In general, the stronger the Kβ’ 

feature, the higher the spin of the system being probed. 
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Figure 2.5: Kβ XES from a Mn(2+) systems (nd = 5) for a large crystal field splitting, low spin 

(a) and small crystal field splitting, high spin (b). 

Using just a treatment of the transition metal with multiplet and crystal field effects, good 

agreement between theory and experiment for charge-neutral spectroscopies such as L2,3-edge 

XAS can already be achieved [90]. With local environmental perturbations being included, 

additional spectral information can be extracted by taking advantage of the dipole selection rules. 

So far, I have focused exclusively on isotropic spectra, but photons can exhibit linear and circular 

polarizations, and the fine structure of polarized spectra can provide magnetic angular 

momentum resolved information about the occupied and unoccupied DOS [15]. The simplest 

dichroism comes from a non-cubic (ex: D4h, C3v) crystal field that causes an anisotropy in orbital 
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occupation. In L-edge absorption, the valence 3d-orbital is directly probed through the 2p to 3d 

dipole transitions. Ignoring multiplet excitations, the absorption spectrum is a mirror of the 

single particle unoccupied DOS, with electrons only transitioning into valence magnetic angular 

momentum orbitals which have holes to accept them.  

There are 3 p-orbitals (𝑝𝑥, 𝑝𝑦, and 𝑝𝑧) which can be excited to 5 d-orbitals (𝑑𝑥𝑦, 𝑑𝑦𝑧, 𝑑𝑧2, 

𝑑𝑥𝑧, 𝑑𝑥2𝑦2), and 3 different linearly polarizations which correspond to the 𝑥, 𝑦, and 𝑧 

polarizations of light. This comes out to a total of 3 × 5 × 3 = 45 total matrix element. Which 

ones contribute to the spectrum can be determined by the selection rules that emerge from the 

Clebsch-Gordan coefficients in the Wigner-Eckart theorem [10]. The Wigner-Eckart theorem 

states that the matrix elements of tensor operators with respect to angular-momentum eigenstates 

must satisfy Eq 2.5, where |𝑗𝑚⟩ is an eigenstate of the total angular momentum operator 𝐽2, 𝑇𝑞
(𝑘)

 

is the 𝑞-th component of the spherical tensor operator 𝑇(𝑘), ⟨𝑗𝑘|𝑗′𝑚′𝑘𝑞⟩ is the Clebsch-Gordan 

coefficient, and the final term with the || is the reduced matrix element which does not depend on 

𝑚, 𝑚′, or 𝑞.  

⟨𝑗′𝑚′|𝑇𝑞
(𝑘)

|𝑗𝑚⟩ = ⟨𝑗𝑘|𝑗′𝑚′𝑘𝑞⟩
⟨𝑗′ ||𝑇𝑞

(𝑘)
|| 𝑗⟩

√2𝑗 + 1
    (𝐄𝐪. 𝟐. 𝟓) 

The Clebsch-Gordon coefficients must obey the triangular condition, |𝑗 − 𝑘| ≤ 𝑗′ ≤ 𝑗 +

𝑘 which determines the allowed values for the rank 𝑗′. This enforces the dipole selection rules, 

given that the dipole transition operator is rank 𝑘 = 1 (Δ𝑙 =  ±1), and the transition must be 

between orbitals that are related by Δ𝑚 = 𝑚′ − 𝑚 = 𝑞 = 0, ±1. For transitions between 

spherical harmonics, the Gaunt coefficients are well tabulated [80], but when considering tesseral 

harmonics (sometimes called cubic harmonics) [91] cross terms must also be considered. For 
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example, the dipole transition from 𝑝𝑦 to 𝑑𝑥2𝑦2 is only non-zero for a y-polarized dipole 

operator, as shown in equation Eq. 2.6, where the notation 𝑌𝑙
𝑚 refers to a spherical harmonic and 

𝑌𝑙,𝑚 refers to a tesseral harmonic. A table of which dipole operators appropriately couple tesseral 

harmonics is provided in Appendix A. 

⟨𝑌1,−1|𝑦|𝑌2,2⟩ = √
𝜋

6
⟨𝑌1

−1 + 𝑌1
1|𝑌1

−1 + 𝑌1
1|𝑌2

−2 + 𝑌2
2⟩

= √
𝜋

6
(⟨ 𝑌1

−1|𝑌1
−1|𝑌2

−2⟩ + ⟨ 𝑌1
−1|𝑌1

−1|𝑌2
2⟩ + ⟨ 𝑌1

−1|𝑌1
1|𝑌2

−2⟩ + ⟨ 𝑌1
−1|𝑌1

1|𝑌2
2⟩

+ ⟨ 𝑌1
1|𝑌1

−1|𝑌2
−2⟩ + ⟨ 𝑌1

1|𝑌1
−1|𝑌2

2⟩ + ⟨ 𝑌1
1|𝑌1

1|𝑌2
−2⟩ + ⟨ 𝑌1

1|𝑌1
1|𝑌2

2⟩

= 0 + 0 −
1

2√5
+ 0 + 0 −

1

2√5
+ 0 + 0 = −

1

√5
      (𝐄𝐪. 𝟐. 𝟔) 

  

By combining the selection rules with the orbital occupation, a picture of the unoccupied 

DOS can be extracted. An example of this behavior is demonstrated for a square-planar system in 

Figure 2.6. For a Mn2+ system, 𝑛𝑑 = 5, and assuming that the crystal field splitting is large 

enough to dominate over the 3d-3d Coulomb repulsion, the electrons will arrange themselves as 

is shown in subplot (a). The energy ordering of the valence orbitals for a general configuration 

can be determined by molecular orbital theory [88]. When the metal bonds to ligands, the ligands 

become negatively charged and repel the electrons left on the metal atom. Therefore, the d-

orbitals oriented along the bonds have the highest energy (𝑑𝑥2𝑦2) and the orbitals with no weight 

along the bonds have the lowest energy (𝑑𝑥𝑧 and 𝑑𝑦𝑧). Orbitals like 𝑑𝑧2 are mostly oriented with 

two nodes perpendicular to the xy-plane but have some weight in the plane and therefore are of 

intermediate energy. The absorption is shown in subplot (b), where the z-polarized spectra is 

shifted to lower energy compared to the x and y-polarized spectra. This is because the 𝑑𝑧2 orbital 
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is partially occupied and lower in energy than the unoccupied 𝑑𝑥𝑦 and 𝑑𝑥2𝑦2 orbitals, and the 

⟨𝑝𝑧|𝑧|𝑑𝑧2⟩ matrix element is twice as large as x or y dipole terms. It should be noted however 

that for most of the absorption spectrum all three polarizations have non-zero contributions. 

Looking at the table provided in Appendix A this is not unexpected, but there is less variation in 

the intensity than would be expected from directly evaluating the matrix elements. This is due to 

two main caveats, 1) Coulomb coupling in the valence level distorts the single particle 

occupation depicted in (a), degrading some of the anisotropy enforced by the crystal field, and 2) 

we are not actually probing the unoccupied DOS of the ground state, as the DOS of a system 

with an electron promoted into the valence level (which includes effects from the 2p core-hole) is 

not equivalent to the ground state system. Despite this, we can observe large shifts in the 

polarized spectrum and use them to form a more complete interpretation of any absorption 

spectra from a non-cubic system. 

This is not necessarily the case with x-ray emission, however. In subplot (c) we show the 

same system with polarization separated emission. The effects of the polarization are much 

weaker, not even experimentally resolvable. The reasoning for this difference between absorption 

and emission comes from the orbitals which each transition is directly probing. If all of the 

environmental information is being contained in the 3d shell, absorption will be much more 

sensitive to it as it involves a transition directly from 2p to 3d. Conversely, core-to-core emission 

like Kα is only sensitive to the valence shell through the Coulomb coupling between the 2p core-

hole. The 1s core-hole is also coupled to the valence shell, but much more weakly than the 2p. 

The strength of the polarization effects on the CtC-XES is proportional to the strength of the 

Coulomb coupling, but for VtC-XES (which involves emission from the environmentally 
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sensitive valence orbitals) the effect is much stronger. The concept will be explored further in 

Chapter 6, discussing polarized XES. 

 

Figure 2.6: Core-level spectra for a Mn(2+) oxidized system with a square-planar (D4h) crystal 

field. (a) Energy diagram for the crystal field split d-orbitals, each irreducible representation is 

split by 0.5 eV. (b) 2p-XAS separated by the polarization of the dipole transition operator. The 

symmetry of the system is such that the x and y polarized spectra are equivalent. (c) The 2p-XES, 

also separated by polarization. 1 eV of Lorentzian broadening is applied to both absorption and 

emission. 

2.4 Charge Transfer Effects 

The final perturbation to consider in the MLFT model comes from modeling how the 

ligands hybridize and share electrons with the central metal ion. This is essential for modeling 

how charge transfer occurs in XPS or XES where the atom is in a charged state following x-ray 

absorption. Up until now, the Hamiltonian has been comprised of 10 crystal field split d-orbitals 

coupled through Coulomb interactions to either 6 core p-orbitals or 2 core s-orbitals, as depicted 

in subplot (a) of Figure 2.7. Adding in the Ligand orbitals increases the basis by at least another 
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10 fermionic modes which couple to the 10 3d orbitals (b), and the particle number of electrons 

in the 3d shell is no longer constrained to 𝑛𝑑. The sharing of electrons between the d and Ligand 

orbitals can lead to non-integer occupation of both orbitals for a general many-body 

wavefunction and spectrally will lead to a large increase in the number of satellite peaks. 

 

Figure 2.7: Examples of single particle Hamiltonians in MLFT with ligand charge-transfer 

coupling (b) and without (a). The onsite energies do not affect the fine structure of spectra when 

the number of d electrons 𝑛𝑑 and core electrons 𝑛𝑐 are constant. However, once charge transfer 

between the d and Ligand orbitals becomes allowed though hybridization coupling, the different 

multielectron configurations that become possible will produce new multiplets and therefore 

more allowed states that contribute to the spectra. The single-particle energies of these 

multielectron configurations will be affected by the onsite energies of all orbitals, and they will 

be parameterized in terms of 𝑈𝑑𝑑 (𝑈𝑐𝑐 for the core orbitals) and Δ. 
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The dynamics of the different configuration energies are parameterized through the 

screened many-body Coulomb term 𝑈𝑖𝑗, and the charge transfer energy Δ. For clarity this 

parameter scheme is the same as the one laid out in J. Zaanen, G. A. Sawatsky, and J. W. Allen 

[92], but the exact definitions of the 𝑈𝑖𝑗 and Δ parameters comes from equations defined in 

Bocquet et. al [93, 94]. The larger the charge transfer energy, the harder it is to transfer an 

electron from the ligand to the metal and will depend on the bonding properties (ex: more 

covalent or more ionic) compound. The number of 3d electrons, 𝑛𝑑, is determined by the free 

atom and the oxidation state. For example, a free Mn atom has an electron configuration of 

4s23d5 so Mn3+ will have a 𝑛𝑑 = 4, with electrons always being taken from the 4s orbital first. A 

higher Δ indicates that a system’s ground state configuration is dominated by the nominal 𝑛𝑑 

configuration because of the high energy penalty, while lower Δ indicates a ground state with is 

more strongly mixed. 
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Figure 2.8: Energies of different configurations for the initial, intermediate, and final states of the 

Kα XES emission process in terms of 𝑈𝑖𝑗 and Δ. 

As addressed in section 2.2, the 𝑈𝑑𝑑 term is related to the Slater integrals by 𝑈𝑑𝑑 =

𝐹𝑑𝑑
0 −

2

63
(𝐹𝑑𝑑

2 + 𝐹𝑑𝑑
4 ), and the value for 𝑈𝑑𝑑 within a solid is greatly reduced from the Hartree-

Fock derived value for a single atom. 𝑈𝑑𝑑 is related to but not the same as the Hubbard 𝑈𝑒𝑓𝑓, 

defined by 𝑈𝑒𝑓𝑓(𝑛𝑑) = 𝐸(𝑛𝑑 + 1) + 𝐸(𝑛𝑑 − 1) − 2𝐸(𝑛𝑑), which gives the energy minimum 

required to move an electron from one metal ion site to another [95]. The Hubbard 𝑈𝑒𝑓𝑓 

(sometimes called 𝐸𝑔𝑎𝑝) in this case involves only the lowest energy multiplet states for each 

electron configuration 𝑛𝑑 while the 𝑈𝑑𝑑 term is the average screened Coulomb interaction for all 

multiplet states of a given configuration. One way of interpreting this that 𝑈𝑑𝑑 and Δ define the 
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centroids of the valence and conduction bands [92]. For more information about the distinction, 

please refer to the thesis of Maurits Haverkort [83] and Simon Heinze [96], and for examples of 

parameters extracted from fits to experimental data please refer to [93]. 

Together, the two parameters (𝑈𝑑𝑑 and Δ) can be used to define the onsite energies of 

different states. An example of this is provided for the Kα XES emission process in Figure 2.8, 

which shows the energies of the 𝑛𝑑, 𝑛𝑑+1, and 𝑛𝑑+2 configurations for the initial (no core-hole, 

Eq 2.7 to Eq. 2.9),  

𝑛𝐿ε𝐿 + 𝑛𝑑ε𝑑 + 𝑛𝑑(𝑛𝑑 − 1)
𝑈𝑑𝑑

2
= 0      (𝐄𝐪. 𝟐. 𝟕) 

(𝑛𝐿 − 1)ε𝐿 + (𝑛𝑑 + 1)ε𝑑 + (𝑛𝑑 + 1)𝑛𝑑

𝑈𝑑𝑑

2
= ∆      (𝐄𝐪. 𝟐. 𝟖) 

(𝑛𝐿 − 2)ε𝐿 + (𝑛𝑑 + 2)ε𝑑 + (𝑛𝑑 + 2)(𝑛d + 1)
𝑈𝑑𝑑

2
= 2∆ + 𝑈𝑑𝑑       (𝐄𝐪. 𝟐. 𝟗) 

intermediate (1s core-hole, Eq 2.10 to Eq. 2.15), 

2εs + 𝑛𝐿ε𝐿 + 𝑛𝑑ε𝑑 + 𝑛𝑑(𝑛𝑑 − 1)
𝑈𝑑𝑑

2
+ 2𝑛𝑑𝑈𝑠𝑑 = 0      (𝐄𝐪. 𝟐. 𝟏𝟎) 

2εs + (𝑛𝐿 − 1)ε𝐿 + (𝑛𝑑 + 1)ε𝑑 + (𝑛𝑑 + 1)𝑛𝑑

𝑈𝑑𝑑

2
+ 2(𝑛𝑑 + 1)𝑈𝑠𝑑 = ∆      (𝐄𝐪. 𝟐. 𝟏𝟏) 

2εs + (𝑛𝐿 − 2)ε𝐿 + (𝑛𝑑 + 2)ε𝑑 + (𝑛𝑑 + 2)(𝑛𝑑 + 1)
𝑈𝑑𝑑

2
+ 2(𝑛𝑑 + 2)𝑈𝑠𝑑

= 2∆ + 𝑈𝑑𝑑       (𝐄𝐪. 𝟐. 𝟏𝟐) 

εs + 𝑛𝐿ε𝐿 + 𝑛𝑑ε𝑑 + 𝑛𝑑(𝑛𝑑 − 1)
𝑈𝑑𝑑

2
+ 𝑛𝑑𝑈𝑠𝑑 = 0      (𝐄𝐪. 𝟐. 𝟏𝟑) 

εs + (𝑛𝐿 − 1)ε𝐿 + (𝑛𝑑 + 1)ε𝑑 + (𝑛𝑑 + 1)𝑛𝑑

𝑈𝑑𝑑

2
+ (𝑛𝑑 + 1)𝑈𝑠𝑑 = ∆ − 𝑈𝑠𝑑       (𝐄𝐪. 𝟐. 𝟏𝟒) 
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εs + (𝑛𝐿 − 2)ε𝐿 + (𝑛𝑑 + 2)ε𝑑 + (𝑛𝑑 + 2)(𝑛𝑑 + 1)
𝑈𝑑𝑑

2
+ (𝑛𝑑 + 2)𝑈𝑠𝑑

= 2∆ + 𝑈𝑑𝑑 − 2𝑈𝑠𝑑       (𝐄𝐪. 𝟐. 𝟏𝟓) 

and final (2p core-hole, Eq 2.16 to Eq. 2.21) states.  

6ε𝑝 + 𝑛𝐿ε𝐿 + 𝑛𝑑ε𝑑 + 𝑛𝑑(𝑛𝑑 − 1)
𝑈𝑑𝑑

2
+ 6nd𝑈𝑝𝑑 = 0      (𝐄𝐪. 𝟐. 𝟏𝟔) 

6ε𝑝 + (𝑛𝐿 − 1)ε𝐿 + (𝑛𝑑 + 1)ε𝑑 + (𝑛𝑑 + 1)𝑛𝑑

𝑈𝑑𝑑

2
+ 6(nd + 1)𝑈𝑝𝑑 = ∆      (𝐄𝐪. 𝟐. 𝟏𝟕) 

6ε𝑝 + (𝑛𝐿 − 2)ε𝐿 + (𝑛𝑑 + 2)ε𝑑 + (𝑛𝑑 + 2)(𝑛𝑑 + 1)
𝑈𝑑𝑑

2
+ 6(nd + 2)𝑈𝑝𝑑

= 2∆ + 𝑈𝑑𝑑       (𝐄𝐪. 𝟐. 𝟏𝟖) 

5ε𝑝 + 𝑛𝐿ε𝐿 + ndε𝑑 + nd(𝑛𝑑 − 1)
𝑈𝑑𝑑

2
+ 5nd𝑈𝑝𝑑 = 0      (𝐄𝐪. 𝟐. 𝟏𝟗) 

5ε𝑝 + (𝑛𝐿 − 1)ε𝐿 + (nd + 1)ε𝑑 + (nd + 1)nd

𝑈𝑑𝑑

2
+ 5(nd + 1)𝑈𝑝𝑑 = ∆ − 𝑈𝑝𝑑      (𝐄𝐪. 𝟐. 𝟐𝟎) 

5ε𝑝 + (𝑛𝐿 − 2)ε𝐿 + (nd + 2)ε𝑑 + (nd + 2)(nd + 1)
𝑈𝑑𝑑

2
+ 5(nd + 2)𝑈𝑝𝑑

= 2∆ + 𝑈𝑑𝑑 − 2𝑈𝑝𝑑      (𝐄𝐪. 𝟐. 𝟐𝟏) 

 The system of equations Eq. 2.7 to Eq. 2.21 are over defined and missing an overall shift 

in the intermediate and final state equations that should come from the lack of a core electron. 

However, this shift does not affect the fine structure of the spectra, and the standard multiplet 

formulation already omits many static energy contributions, so we gladly ignore this fact and 

focus instead on the multiconfigurational character of the solutions to the now hybridized 

Hamiltonian. This is determined by solving the charge-transfer equations for the onsite energies 
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ε𝑑 , ε𝐿 , ε𝑝, and ε𝑠. These are then used to set the centroid of each block (dd, LL, 𝛼𝛼, etc) in the 

Hamiltonian using equation Eq. 2.22, where there are 𝑛 fermionic modes in orbital 𝛼.  

ε𝛼 = ∑
𝐻𝑖𝑖

𝑛
𝑖 ∈ 𝛼𝑏𝑎𝑠𝑖𝑠

  (𝐄𝐪. 𝟐. 𝟐𝟐) 

All of this helps to explain the energies of the various configurations, but what is the 

character of the hybridized wavefunctions that are produced from the metal-ligand coupling? 

This can be answered through traditional ligand field theory [88], where orbitals of the same 

symmetry end up mixing together to produce linear combinations of metal and ligand atomic 

orbitals. This behavior is shown in Figure 2.9 for a metal (3d) ligand (2p) complex that is Oh 

coordinated, reproduced from Xiao Cheng’s thesis [72]. The 𝑑𝑧2 and 𝑑𝑥2𝑦2 bonds that make up 

the eg crystal field level lie along the 𝑥, 𝑦, 𝑧 axes and form 𝜎 bonds with the ligand p orbitals that 

are also oriented along axis. Conversely the 𝑑𝑥𝑦, 𝑑𝑦𝑧, and 𝑑𝑥𝑧 orbitals have their lobes oriented 

45∘ degrees relative to any axis and thus hybridize with the ligand p orbitals that are 

perpendicular to the axis connected them to the metal ion to form 𝜋 bonds. When any two 

orbitals hybridize, they will always produce a higher and lower energy pair of mixed states, 

which are denoted as bonding (no *) and antibonding (*) orbitals.  
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Figure 2.9: Molecular orbital bonding scheme considering crystal field, ligand field, and charge 

transfer effects in Oh symmetry. Figure taken from Xiao Cheng’s thesis [72]. 

2.4.1 Approximations and Parameter Dependence 

While 𝑈𝑑𝑑 and Δ are generally taken as free parameters to be fit to experiment, the 

screened average Coulomb interaction between the core and valence levels (𝑈𝑐𝑑) are in principle 

related to the strength of the valence – valence term. The more localized the valence electrons 

are, the more their wavefunctions will overlap both within the valence shell and with the core 

electrons. Often the 𝑈𝑐𝑑 terms are found to be within 0.5 eV to 2.0 eV larger than 𝑈𝑑𝑑 [97], and 

are frequently approximated as having a fixed ratio between 𝑈𝑐𝑑 and 𝑈𝑑𝑑 [98]. This ratio is often 

around 𝑈𝑐𝑑/𝑈𝑑𝑑 ≈ 1.2 with the ratio getting larger the more localized the core level is. This 

approximation is important because it reduces the number of free parameters that are involved 

when fitting a spectrum to experiment. While fits over a full parameter space sweep can result in 
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±10% from this ratio for different compounds, it is a good rule of thumb that constrained the 

𝑈𝑐𝑑 parameters to physically reasonable values. The range of physically reasonable values for 

𝑈𝑑𝑑 and Δ are generally taken to be between 1.0 and 9.0 eV [99]. However, in highly covalent 

materials, the charge transfer energy can become very small or even negative [100, 101]. The 

energy of charge-transfer satellites is strongly dependent on these parameters, as well as the 

strength of the hybridization coupling (usually around 0.5 eV to 4.0 eV). 

 

Figure 2.10: Demonstration of how different various spectroscopies (XES, XAS, XPS in the 

first, second, and third columns respectively) vary for different charge transfer parameters 𝑈𝑑𝑑 
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and Δ. Each row corresponds to a different path through the charge transfer phase space, as 

shown in the rightmost column. 

An example of how the spectra can vary for different charge transfer parameters is shown 

in Figure 2.10. Each row shows the XES, XAS, and XPS spectra for a Ni(2+) ion from NiO for 

variable 𝑈𝑑𝑑 and Δ. The spectra are calculated using an Oh crystal field with 10Dq = 0.6 eV, a 

Slater-Condon scaling of 0.8, hybridization coupling of 𝑉𝑒𝑔 = 2.12 eV and 𝑉𝑡2𝑔 = 1.214 eV, 

ligand crystal field of 10Dq-L = 1.5 eV, and a ratio of 𝑈𝑠𝑑/𝑈𝑑𝑑 = 1.2 and 𝑈𝑝𝑑/𝑈𝑑𝑑 = 1.15, with 

1.0 eV of constant Lorentzian broadening applied for visualization purposes. In XES the spectra 

are moderately sensitive to the charge-transfer parameters, which comes from the indirect 

sensitivity to the valence shell and that the spectrum only involves transitions between core 

orbitals. The XAS shows a mixture of sensitivity strengths, with some regions of the phase space 

diagram producing large changes in the spectrum for relatively small changes in the parameters. 

This is not uncommon and is generally related to the fact that the x-ray absorption is a direct 

probe of the 3d valence level and can thus be highly sensitive to the character unoccupied 

valence orbitals. Finally, the XPS shows the largest variability with charge-transfer parameters. 

In general, charge-transfer effects are most prevalent in spectroscopies where the final state 

experiences a dramatic change in screening [102]. This leads to strong shake satellites, the 

energies of which are highly sensitive to the charge transfer parameters. 
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2.5 Computational Methods 

2.5.1 Multiplet Software 

 

Figure 2.11: Screenshot of the Crispy GUI software for running Quanty. Shown is an example 

calculation of Ni(2+) L2,3 XAS using default parameters. 

Most modern multiplet software relies on the initial development work of Robert D. Cowan 

[82] which computes the Slater-Condon Coulomb parameters and spin-orbit splitting parameters 

for an arbitrary configuration, with up to five open subshells. Many updates and iterations have 

been applied to it since it’s development in the late 1960’s, but the original scripts are preserved 

in the NIST public data repository [103]. On top of Cowan’s code, packages such as the THOLE 

[104] and TANAKA (also known as XTLS) [83] codes have been built for calculating various 
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spectra and other properties from the multiplet + perturbation model. Further on top of these, 

certain graphical user interface (GUI) have been developed such as the CTM4XAS [105], 

CRISPY [106], and MISSING [107] that make it easier for new users to get started with 

multiplet software. Screenshot examples of the CRISPY and MISSING GUI interfaces are 

provided in Figures 2.11 and 2.12, respectively. The development of these GUIs and more 

capable multiplet codes over the last 30 years has led to an increase in their application to 

machine learning tasks [62, 108-111]. Examples of extensive studies using these codes and a 

complete review of all multiplet codes and their capabilities is available in de Groot et al. [67]. 

 

 

Figure 2.12: Screenshot of output from the MISSING code showing the Hartree-Fock calculated 

Slater-Condon and spin-orbit coupling parameters from the RCN2 module for two different 

configurations of an Fe2+ atom (2p6 3d6 and 2p5 3d7). No scaling has been applied to the 

atomic values. 



 

54 
 

2.5.2 Real Space Multiple Scattering 

One of the most widely used real space multiple scattering codes is FEFF (which also 

happens to be the once most relevant this work), which implements a self-consistent scattering 

framework to compute observables in x-ray spectroscopy (ex: XANES, x-ray Raman 

spectroscopy, Compton scattering) [13]. In FEFF, the scattering problem is solved by partitioning 

the system into atomic scattering centers and representing the photoelectron’s propagation as a 

sum over all possible sequences of scattering events, considered up to a given order or within a 

finite cluster size. Convergence in FEFF is primarily controlled by a few key parameters. First, 

the self-consistent field (SCF) radius, which determines the cluster surrounding the absorbing 

atom over which the charge density is self-consistently determined. Second, the full multiple 

scattering (FMS) radius, which defines the set of atoms over which the multiple scattering 

solution (all paths) is determined. A core approximation made within the FEFF code is the use of 

a muffin-tin approximation [112], where the total potential is described by a sum of spherically 

symmetric potentials centered around in each, with interstitial potentials between spheres. This 

helps make the multiple scattering formalism tractable but can be problematic for systems with 

strongly aspherical charge densities. 

2.5.3 Lifetime Broadening 

The final state in x-ray spectroscopy often involves a core-hole and is inherently unstable. An 

atom in this state will eventually relax either radiatively (x-ray emission) or non-radiatively 

(Auger [22]). All relaxation processes contribute to the finite core-hole lifetime, and this effects 

the spectra through the energy-time uncertainty principle, (Δ𝐸)(Δ𝑡) ≥ ℏ [10]. Functionally this 

leads to broadening of the spectra proportional to the energy uncertainty associated with the 

core-hole lifetime. This is the origin of the Γ terms in Eqs. 1.4 to 1.6. The deeper a core-hole is 
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the shorter its lifetime will be and consequently the larger its energy broadening effect will be on 

the x-ray spectrum. This is because a deep core-hole has more available orbitals with electrons 

that can decay down in energy to fill it, compared to a valence level hole which can only be filled 

by other, more weakly bound, valence electrons.  

This process generally exists outside of the MLFT model, as it can be difficult to treat all 

possible decay pathways for a given state. The output of most MLFT codes is a list of energies 

and intensities which are then convolved with Lorentzian and Gaussian line shapes to treat 

lifetime and instrumental broadening effects respectively. Therefore, we usually rely on tabulated 

values from different experimental techniques to determine the appropriate broadening [113]. In 

general, every final state in a spectrum will have a different lifetime [114], but we will often treat 

the broadening with an approximate constant or linear energy dependence to approximate the 

true lifetime effects. An example of this for Kα and Kβ emission is provided in Figure 2.13, but it 

should be noted that there is not general accepted method for approximating the energy 

dependent broadening. Due to the commutative nature of convolutions, the order in Gaussian and 

Lorentzian broadening is applied does not matter. An example of how the spectra changes from a 

set of energies and intensities to a final spectrum that can be compared to experiment is provided 

in Figure 2.14. 
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Figure 2.13: Energy dependent Lorentzian broadening use to convolve calculated Kβ (upper 

panel) and Kα (lower panel) emission spectra. Figure reproduced from the supplemental 

information of Lafuerza et al. [31]. 
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Figure 2.14: Depiction of the how the experimental and lifetime broadenings were applied for 

MnF2. (a) The spectrum with a weak constant 0.1 eV Lorentzian broadening across the entire 

energy range, referred to as the “unbroadened” spectrum. (b) The Gaussian experimental 

broadening as a function of energy. (c) The resulting spectrum after constant Gaussian 

broadening is applied. (d) The Lorentzian lifetime broadening as a function of energy. The 

lifetime broadenings are constant near the centroids of the peaks, but roughly halfway in between 

they quickly vary from one value to the other. (e) The final spectrum after all broadening has 

been applied. Figure reproduced from Cardot et al. [101]. 
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Chapter 3  DFT + MLFT 

As addressed in Chapter 1, there are many levels of theoretical methods for treating the 

multiplet and strong correlation effects that are intrinsic to the core-level spectroscopy of most 

transition metal systems [72. They face major detractors in terms of accuracy, computational 

efficiency, or limited range of applicability, all except for MLFT. The semi-empirical perturbed 

cluster model is widely successful and achieves excellent agreement compared with experiment 

given its relatively cheap computational cost. As of writing, it is still actively used for treating 

XAS, XES, XPS, and RIXS research {Amorese, 2019 #115, 115, 116] and multiplet spectral 

calculation software still receive regular updates [74, 105]. However, the main advantage of 

MLFT is also its greatest disadvantage, with its semi-empirical nature limiting its utility. 

To combat this notorious problem serious research has been put towards shaving off and 

eliminating certain free parameters. While DFT fails to capture many-body effects in strongly 

correlated systems, it can still reproduce reliable values for crystal field effects and hopping 

parameters. Earlier work demonstrated how molecular orbitals formed from LDA calculations 

could be used to reproduce some MLFT parameters [117, 118], but it wasn’t until 2012 when 

Haverkort et al. [97] demonstrated a complete first-principles pipeline for extracting the vast 

majority of the MLFT parameters. They accomplished this through extracting a tight-binding 

Hamiltonian built from symmetry-adjusted Wannier functions (WFs), which provides a localized 

single-particle basis onto which the multiplet and charge-transfer effects can added onto. This 

idea is the critical foundation behind all of the core-level spectra that will be presented in this 

thesis after this point. 
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3.1 Tight-Binding Hamiltonian from Wannier Functions 

The DFT + MLFT pipeline originally developed by Haverkort relied on the linear augmented 

plane wave basis code Wien2K [119], which treats all electrons explicitly including the core 

states. In this work we use the QUANTY interface with the DFT code FPLO [120], “Full Potential 

Local Orbital”, which can treat both infinite crystals and individual molecules, and provides a 

similar all-electron treatment to accurately capture the physics of core electrons. More details 

about the basis functions and capabilities of the FPLO code can be found in its manual, but 

critically the output of its Wannier downfolding and radial functions for the basis orbitals can be 

read in and processed by Quanty. The tight-binding calculation procedure begins with a 

standard DFT calculation using an LDA functional and a dense k-grid to get well converged 

Kohn-Sham wavefunctions and band structure. The Kohn-Sham wavefunctions can be Fourier 

transformed into WFs that are localized in space, as defined in Eq. 3.1. 

𝑊𝑅𝜇 =
𝑉

(2𝜋)3
∫ 𝑑𝑘 𝑒−𝑖𝑘𝑅 ∑ Ψ𝑛

𝑘𝑈𝑛𝜇
𝑘

𝑛

  (𝐄𝐪. 𝟑. 𝟏) 

The Wannier function 𝑊𝑅𝜇 is defined by lattice vector 𝑅 and type 𝜇 which denotes the center 

of the WF and its symmetry (ex: WF for Ni 𝑑𝑥𝑦) [121]. The Fourier transform (transforming 

from 𝑘-space to real-space), is over a sum of Bloch waves Ψ𝑛
𝑘 each transformed by an arbitrary 

𝑘-dependent unitary matrix 𝑈𝑛𝜇
𝑘  that mixes the Bloch wavefunctions at each 𝑘 point. This 𝑈𝑛𝜇

𝑘  

has no unique definition, and different choices can be made to achieve different Wannier 

functions from the same Bloch wavefunctions. Often the approach is to minimize the gauge 

variant part of the total spread to achieve maximally localized Wannier functions [122]. 

However, the minimization procedure we use enforces a constraint that the Wannier functions 
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have the same symmetry as the atomic derived FPLO basis used to construct them [123]. This is 

not necessarily a global minimum in the spread function, but it is critical for later use in 

symmetry analysis (e.g. polarized spectra) of the perturbed multiplet model. 

In the present approach, the band structure and projected density of states are calculated 

using the LDA functional on a 20x20x20 Monkhorst-Pack k-mesh with a density convergence 

parameter of 10-10 Å-3. All materials were carefully checked for convergence before moving on to 

the Wannier downfolding. The Perdue Wang 92 functional was used to perform the LDA 

calculation [124], and no spin was included in the DFT step. All spin state effects observed in the 

calculated spectra are the results of terms included in the MLFT step. The unit cells used to 

create the input files for FPLO were taken from the crystallographic open database [125, 126]. 

The bulk of the calculations were performed using FPLO version 14.00-49-x86_64, however 

some materials were recalculated with FPLO version 21.00-61_x86_64 for real space 

visualizations of the Wannier orbitals. For the systems and properties calculated numerical 

differences between the outputs are negligible. 

The band structure and density of states are used as a guide to define and energy window 

around the Fermi energy. It is within this window that all physically relevant processes for the 

valence shell will take place (eg. crystal field splitting, hybridization). This is similar in scope to 

defining an ‘active space’ in CASSCF techniques, where only basis orbitals within the energy 

window are considered for constructing the Wannier orbitals. This result of this procedure 

(known as ‘downfolding’ within FPLO) is shown for Cr2O3 in Figure 3.1, where the bands built 

from the localized Wannier orbitals for Cr-3d (red) and O-2p (blue) coincide exactly with the full 

DFT band structure. From the LDOS we clearly see that while the bands have primarily d and 

Ligand character, they have some hybridization which will lead to off diagonal coupling between 
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the d and Ligand blocks in the tight binding Hamiltonian. In the case of well-isolated bands the 

accuracy and degree of localization is generally quite good, but band disentangling is sometimes 

needed [121, 127]. The presence of bands from other atoms that are not included in the tight 

binding Hamiltonian (ex: Pb in PbCrO4) can also complicate the downfolding procedure. It is 

good practice to always check the agreement of the Wannier bands with the true DFT band 

structure, and to adjust the energy window and orbitals included in the downfolding before 

moving on. 

 

Figure 3.1: (left) The DFT calculated band structure for Cr2O3 (black) with the Wannier bands 

for the Cr-3d and O-2p projected orbitals shown in red and blue respectively. (right) the l-

projected density of states separated into the Cr-3d and O-2p contributions. 

 A real-space visualization of the Wannier orbitals is shown in Figure 3.2 for a projection 

onto the Ni 3d and O 2p of NiO. The symmetry adapted Wannier functions are similar in shape 
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to the atomic orbitals, but some of the weight of the wave functions is shared with the 

neighboring atoms. 
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Figure 3.2: Symmetry adapted Wannier functions for atomic Ni 3d and O 2p orbitals calculated 

and visualized using FPLO version 21. 

Once the downfolding is complete, they overlap between every Wannier band with every 

other Wannier band is output from FPLO into a massive list of matrix elements which are used to 

create 𝐻𝐷𝐹𝑇 defined in Eq. 3.2. The onsite energy ε𝑑 and ε𝐿 are the same that are addressed in 

equations 2.7 to 2.21 but will have to be shifted according to the charge transfer parameters. The 

index 𝛾 goes over both the 𝑑 and 𝐿 basis encapsulates the single particle crystal field and 

hybridization coupling from the Wannier orbitals. 

𝐻𝐷𝐹𝑇 =  ε𝑑 ∑ 𝑐̂𝑑
†𝑐̂𝑑

𝑑

 + ε𝐿 ∑ 𝑐̂𝐿
†𝑐̂𝐿

𝐿

+ ∑ 𝑉𝛾𝛾′
𝐿𝐹 𝑐̂𝛾

†𝑐̂𝛾′

𝛾𝛾′

  (𝐄𝐪. 𝟑. 𝟐) 

The size of the basis for an arbitrary cluster will depend on the number of Ligands and how 

many fermionic modes are in their open shells. The ligand orbitals are much more delocalized 

than the TM 3d orbitals, and the size of the Hilbert space can be greatly reduced by treating them 

as uncorrelated and taking linear combinations of the Ligand orbitals. In the one-electron basis, 

an Oh cluster with 𝑛𝑑 = 5 would have 5 + 6 × 6 = 41 electrons which in turn gives 46 choose 

41, (46
41

) ~ 106 possible states. By using a linear combination of Ligand orbitals, the matrix can 

be tridiagonalized [128], and the Ligand-d block immediately adjacent to the TM-3d block is 

comprised of a basis of Ligand orbitals that are most strongly coupled to the transition metal 

orbitals. An example of one of these matrices for just the TM-3d and Ligand-d blocks is shown 

in Figure 3.3. The advantage of this is two-fold, 1) the tridiagonalization procedure also helps 

make the matrix sparser which makes it easier to treat numerically and 2) The basis can generally 

be reduced to only the transition metal block and first ligand block without significant loss of 

information [97].  
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Figure 3.3: The single particle tight binding Hamiltonian created from the Wannier downfolded 

orbitals for NiO. The transition metal 3d block is shown in red, the ligand d block is shown in 

blue, and the coupling terms between them are shown in pink. Note that because spin is not 

included in the DFT calculation there is no coupling between the spin up and spin down orbitals 

within the Hamiltonian. 

3.2 DFT + MLFT Calculations 

The DFT calculation uses an LDA functional to treat the exchange interaction between 

electrons, which is similarly included from the atomic terms in the MLFT calculation. Therefore, 

steps need to be taken to ensure that we avoid double counting of this interaction. The monopole 

component and the on-site energies are dealt with through fitting 𝑈𝑑𝑑 and Δ to experiment, but 
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the multipole components will still be shifted. The original method for treating the double-

counting is addressed in appendix C of Haverkort et. al [97], but the method we use here is to 

simply remove the mean field component of every multipole term from the 𝐻𝐷𝐹𝑇 before adding 

in the explicit Slater-Condon terms. Any two-particle operator can be represented as a one-

particle operator using the Hartree-Fock approximation [129]as shown in Eq. 3.3. 

𝑎̂𝑖
†𝑎̂𝑗

†𝑎̂𝑘𝑎̂𝑙 =  𝑎̂𝑖
†𝑎̂𝑙〈𝑎̂𝑗

†𝑎̂𝑘⟩ + 𝑎̂𝑗
†𝑎̂𝑘〈𝑎̂𝑖

†𝑎̂𝑙⟩ + ⟨𝑎̂𝑖
†𝑎̂𝑘⟩〈𝑎̂𝑗

†𝑎̂𝑙⟩ − 𝑎̂𝑖
†𝑎̂𝑘〈𝑎̂𝑗

†𝑎̂𝑙⟩ − 𝑎̂𝑗
†𝑎̂𝑙〈𝑎̂𝑖

†𝑎̂𝑘⟩

− ⟨𝑎̂𝑖
†𝑎̂𝑙⟩〈𝑎̂𝑗

†𝑎̂𝑘⟩  (𝐄𝐪. 𝟑. 𝟑) 

𝐷𝐹𝑇𝑆𝑒𝑙𝑓 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =  ∑ 𝑈(⟨𝑎̂𝑚
† 𝑎̂𝑛⟩)

𝑇
𝑎̂𝑚

† 𝑎̂𝑛

𝑚,𝑛

  (𝐄𝐪. 𝟑. 𝟒) 

𝑈 =
2

(𝑁𝐹(𝑁𝐹 − 1))
 ∑(𝑈𝑚,𝑛,𝑛,𝑚 − 𝑈𝑚,𝑛,𝑚,𝑛)

𝑚,𝑛

  (𝐄𝐪. 𝟑. 𝟓) 

The DFT self-interaction as defined in equation Eq. 3.4, where 𝑈 is the average electron-

electron interaction energy for a system of 𝑁𝐹 fermions (Eq. 3.5). For the 𝐹𝑑𝑑
0 , 𝐹𝑑𝑑

2 , and 𝐹𝑑𝑑
4  

operators, they can be converted into mean-field operators using Eq. 3.3 and the density matrix 

taken from the DFT calculation 𝜌𝐷𝐹𝑇, which defines the expectation values of any 𝑎̂𝜏
†𝑎̂τ′ term. 

The 𝐷𝐹𝑇𝑆𝑒𝑙𝑓 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is also added to the mean field operator as the DFT which is subtracted 

from 𝐻𝐷𝐹𝑇 because LDA does not properly exclude the interaction of an electron with itself. The 

Coulomb interaction is then added back in according to equations Eq. 2.2 to Eq. 2.5, and the 

DFT calculated radial wave functions serve as a basis within Quanty for determining the Slater-

Condon coefficients. 
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Figure 3.4: Examples of DFT + MLFT calculated spectra for three different transition metal 

materials with calculated spectra in black and experiment in red. Going from left to right the 

spectra are the (a) Cr L2,3 XAS of CrSBr, (b) Mn Kα XES of Mn2O3, and (c) Ti 2p XPS of 

SrTiO3. The charge transfer parameters have been optimized for fitting to experiment, but only a 

constant energy independent lifetime broadening is used. 

 The versatility of the DFT augmented approach is the same as traditional MLFT, but the 

massive reduction in free parameters leads to greater confidence in fits to experiment. Examples 

of spectra calculated using this pipeline are shown in Figure 3.4 for 3 different transition metal 

systems (CrSBr, Mn2O3, and SrTiO3) and 3 different spectra (XMCD, XES, XPS). In all cases, 

the ideal charge transfer parameters 𝑈𝑑𝑑 and Δ can be determined via a full parameter sweep 

over the remaining phase spaces and achieve relatively good agreement between theory and 

experiment. Often, determining the best fit parameters of a general MLFT problem is done by 

using past work on similar systems as a starting point and then by manually changing individual 

parameters until a satisfactory agreement with experiment is reached [93]. While the MLFT 

calculations are relatively cheap compared to other methods, a full exploration of even a 4 or 5 

parameter model (a highly symmetric Oh system has at a minimum 4 parameters: 𝑈𝑑𝑑, Δ, Slater-
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Condon scaling, and 10Dq) is still prohibitively expensive. However, with only two parameters, 

a 𝜒2 minimization such as the one shown in Figure 3.5 can be achieved on a modern computing 

cluster in approximately 24 hours. Special care needs to be taken to deal with scaling, energy 

shifts, and energy dependent broadening (addressed in section 2.5.2) when quantifying the 

difference between calculated and measured spectra, but in general this technique allows for a 

much more scientifically rigorous fit than was previously possible. This more ab-initio 

methodology has been successfully applied to a range of 3d transition metal systems and 

spectroscopies in published work [72, 97, 130]. 

 

Figure 3.5: 𝜒2 minimization of the Kα XES for Mn in KMnO4 performed by sweeping over a 

range of 𝑈𝑑𝑑 and Δ values. 

 The idea of DFT based ab-initio methods for determining free parameters in MLFT is 

quite recent, with most new work focusing on providing interfaces between codes [119, 120, 

131] or determining orbital-dependent Slater-Condon scaling factors [132]. However, one 

promising new avenue is the use of DFT + Dynamical Mean Field Theory (DMFT) [130] which 
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maps the interacting lattice problem onto a single-site impurity embedded in a self-consistent 

electron bath. This impurity model helps recapture some of the continuum excitations which are 

lost in a purely discrete model, see figure 1 from Lüder et al. [130]. While this approach 

similarly has free parameters and double counting corrections, it is a promising avenue for 

improved ab-initio MLFT calculations. 
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Chapter 4  Core-to-Core X-ray Emission Spectra from Wannier 

Based Multiplet Ligand Field Theory    

 

Originally published as: Cardot, C. A., Kas, J. J., Abramson, J. E., Rehr, J. J., & Seidler, G. T. 

(2024). Core-to-core X-ray emission spectra from Wannier based multiplet ligand field 

theory. Journal of Electron Spectroscopy and Related Phenomena, 270, 

147419. https://doi.org/10.1016/j.elspec.2024.147419. C. Cardot wrote and conducted the 

majority of this work 

 Recent advances using Density Functional Theory (DFT) to augment Multiplet Ligand 

Field Theory (MLFT) have led to ab-initio calculations of many formerly empirical parameters. 

This development makes MLFT more predictive instead of interpretive, thus improving its value 

for studies of highly correlated 3𝑑, 4𝑑, and f-electron systems. Synchrotron time is always at a 

premium, and tools that provide predictive capabilities have clear value when it comes to 

planning studies. Here, we develop a DFT + MLFT based approach for core-to-core Kα x-ray 

emission spectra (XES) and evaluate its performance for a range of transition metal systems. We 

find good agreement between theory and experiment, as well as the ability to capture key 

spectral trends related to spin and oxidation state. We also discuss limitations of the model in the 

context of the remaining free parameters and suggest directions forward. 

4.1 Introduction 

The qualitative connection between ground state electronic structure and macroscopic 

physical properties of molecules and condensed phases has been evident since the earliest  

treatments based on the Fermi-Dirac distribution [1], Bloch waves [2], and the quantum 

mechanical treatment of chemical bonding [3]. However, given the nature of currently available 

https://doi.org/10.1016/j.elspec.2024.147419
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probes, an accurate description of excited-state electronic structure is often necessary for a 

quantitative connection between theory and experiment. This is especially apparent for core shell 

spectroscopies, such as electron energy loss spectroscopy (EELS) [4], x-ray photoelectron 

spectroscopy (XPS) [5], and x-ray absorption spectroscopy (XAS) (including x-ray absorption 

fine structure, XAFS), non-resonant x-ray emission spectroscopy (XES), and resonant inelastic 

x-ray scattering (RIXS) [6]. Therefore, the accurate simulation of these probes has long been a 

core goal of the theoretical condensed matter and chemistry communities [7, 8]. The ability to 

reliably predict these core-shell spectroscopies has clear scientific benefits. 

To address this need, many theoretical and computational approaches for core shell 

spectroscopy have been developed [9], including those based on time-dependent density 

functional theory (TDDFT), [10], many-body perturbation theory in the form of the Bethe-

Salpeter equation [11, 12], multiple scattering methods [13], quantum chemistry based methods 

[5, 14, 15], and the multiplet ligand field theory (MLFT) approach which we adopt here [7, 16-

18]. With comparatively lower computation cost, the application of MLFT to highly correlated 

open-shell materials finds good agreement with a variety of x-ray spectroscopies, e.g., XAS [19], 

XES [20, 21], XPS [22], and RIXS [23, 24]. MLFT relies on exact diagonalization of the 

Hamiltonian for small clusters, making it well suited for describing local properties such as the 

previously mentioned excitonic spectra. The major drawback of conventional treatments of 

MLFT comes from the many free parameters that are used in fitting calculated spectra to 

experiment, limiting its predictive value and interpretation.  

However, recent developments utilizing Wannier functions allow ab-initio DFT 

calculations to replace most of the free parameters related to solid state effects [16]. This process 

is laid out in Figure 1, where the modified Slater-Condon parameters, tight-binding Hamiltonian 
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(HTB), and some charge-transfer terms are extracted from DFT calculations. This greatly 

simplifies the adjustable phase space of the model, allowing for a much more predictive 

approach to MLFT [25-28]. Although DFT + MLFT has been successfully used to simulate 

XAS, XPS, and RIXS, its application to core-to-core (CTC) XES has, as far as we are aware, 

been unexplored. Even in the context of traditional MLFT the only validated tool for CTC-XES 

is CTM4XAS [18], which still is subject to a large empirical parameter space. It should be noted 

that these tools have developed alongside rapidly improving experimental capabilities. New x-

ray free electron laser (XFEL) facilities have led to an increase in femtosecond resolved 

dynamics of charge-transfer and spin-crossover transitions observed in CTC-XES [29-31] which 

is critical for characterizing molecular and bonding phenomena in 3d transition metal complexes. 

An increasing number of in-operando Lithium-ion battery studies rely on the K XES of 3d 

transition metals for studying correlations between the magnetic moment and charge state [32, 

33]. Better addressing the forward problem not only improves the interpretation of spectral 

characteristics but provides a useful method of screening potential studies. This can be as simple 

as bolstering beam-time applications to the generation of large data sets for use in machine 

learning [34-36]. Achieving this also lays the groundwork for improved predictive tools for 

photon-in photon-out techniques, given their shared dependence on the de-excitation process. 
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Figure 1: (Left) Schematic representation of the theoretical workflow with the left column 

corresponding to the method being used, the center column corresponding to the associated 

components calculated using said theory method, and the right column corresponding to the 

software carrying out the calculation at that step. (Right) Checklist of which parameters are 

calculated from first principles. DFT is used to extract ab-initio values for many traditionally 

empirical parameters, leaving only the charge transfer terms which must be set ad-hoc. These are 

all combined within the MLFT framework, as implemented with the Quanty code, and then used 

to calculate the Green’s function and resulting spectrum of the target system. 

 

In this work we present the nuances of the calculation for CTC-XES within MLFT and 

validate the performance of this ab-initio technique across a range of 3d transition metal (TM) 

systems. CTC-XES is an ideal application of DFT + MLFT for two reasons: 1), it requires 

charge transfer to accurately represent the system in the presence of the core-hole, meaning the 

hopping terms from the Wannier step are critical; and 2) the transition from intermediate to final 

state is charge neutral and only involves deep core levels, making it fall confidently under the 
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umbrella of a “perturbed atomic system” [7]. These together make it a superior direct test of DFT 

+ MLFT compared to other techniques like XAS, XPS, and RIXS. 

To this end, we will focus on DFT + MLFT for Kα (2p → 1s) XES of 3d transition 

metals. The choice of emission line is appropriate for a validation of the approach in correlated 

systems. First, MLFT is fundamentally a perturbation theory, and as such, we aim to validate the 

leading order of environmental perturbation. This condition is justified by the weak coupling 

between the 2p states and the ligand-level electronic structure. The locality of Kα XES has also 

previously been contrasted to the more extended nature of XAFS, with the observation that Kα 

spectra can have generally simpler sensitivity to atomically-derived observables such as 

oxidation state [37]. This suggests that CTC-XES is only sensitive to local symmetry through 

Coulomb exchange coupling, unlike valence-to-core (VTC) XES or XAS where the optical 

excitation essentially probes the single particle density of states near the Fermi-level and is thus 

sensitive to the coordination symmetry. Second, the collection of 3d TM systems studied 

includes some materials with strongly localized valence-level electrons where MLFT is natural, 

and some systems with strong covalency where empirical parameters in MLFT typically take 

unexpected, if not unphysical, values to obtain numerical agreement with experiment. Again, the 

point here is to challenge the leading-order calculation of deep core-to-core XES via DFT + 

MLFT. 

This paper is organized as follows: In section II, we summarize the theory of 

nonresonant-XES and the details of the DFT + MLFT framework as well as methods used to 

reduce the number of free parameters down to only two. The details of the codes being used are 

documented elsewhere [38, 39], but example input files are provided in SI-I. In section III, we 

present results, discuss the validity of the approximations used, and compare calculated spectra 
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with experimental spectra for a range of transition metal compounds. We examine performance 

across spin-state, environmental symmetry, and oxidation. Finally, in section IV, we explore the 

remaining two-dimensional phase space, discuss systematic drawbacks, and propose future 

directions for this framework. 

4.2 Theoretical Formalism 

A.  XES Theory   

The creation of a non-resonant diagram line in x-ray fluorescence is illustrated in Figure 

2. In core-to-core XES, a core electron absorbs a high energy photon, leaving a deep core-hole 

behind and ejecting a photoelectron. After a few fs, the core-hole is filled by a less tightly bound 

(shallower) electron, and a photon is emitted, leaving the system in a final state with either a 

semi-core or valence level hole. When studied with modest energy resolution, the resulting x-ray 

fluorescence is commonly used for elemental identification [40]. On the other hand, following 

the synchrotron community convention, the same radiation is termed x-ray emission when 

studied with energy resolution comparable to intrinsic broadening. Such XES experiments 

provide information about the element specific chemical and electronic environment, often 

including sensitivity to oxidation and spin state of the species of interest [6].   
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Figure 2: Schematic of the non-resonant x-ray fluorescence process. Going from left to right, an 

x-ray (red wiggling line) is absorbed by a core electron (solid blue circle), which is subsequently 

ejected from the system into the continuum. A short time later a less tightly bound electron 

decays into the hole (dashed blue circle) left behind by the deep core electron, emitting an x-ray 

to preserve energy. 

The complete photon-in, photon-out process can be described by the Kramers-Heisenberg 

formula [7, 41], 

𝑑𝜎(𝜔1,𝜔2)

𝑑𝜔1𝑑𝜔2
∝ ∑ |∑

〈𝐹|𝑇̂2|𝑀〉〈𝑀|𝑇̂1|𝐼〉

𝐸𝐼+𝜔1−𝐸𝑀+𝑖Γ𝑀/2𝑀 |
2

𝐹
(Γ𝐹/2π)

(𝐸𝐼−𝐸𝐹+𝜔1−𝜔2)2+Γ𝐹
2 /4

,   (1) 

where |𝐼〉, |𝑀〉, |𝐹⟩ are initial, intermediate, and final N-electron many-body states, with 

corresponding energies 𝐸𝐼 , 𝐸𝑀, 𝐸𝐹. The broadenings Γ𝑀,  Γ𝐹, are due to the lifetimes of the 

intermediate and final states, respectively, and 𝑇̂1, 𝑇̂2, are dipole transition operators. The terms 

𝜔1 and 𝜔2 are the energies of the incoming and outgoing photons, respectively, making 𝜔1 − 𝜔2  

the energy transferred to the system. For nonresonant XES, the spectral shape is independent of 



 

77 
 

the incoming photon energy. In this case, the photoelectron can be neglected and the spectrum is 

proportional to the integral over incoming energy 𝜔1 [7]. If the lifetime broadening Γ𝑚 is 

assumed constant, the integration simplifies to, 

𝑑σ𝑋𝐸𝑆(𝜔2)

𝑑𝜔2
∝ ∑ |∑

〈𝑓|𝑇̂2|𝑚〉〈𝑚|𝑠̂|𝐼〉

𝐸𝑓−𝐸𝑚−𝜔2+𝑖(Γ𝑚+Γ𝑓)/2𝑚 |
2

(Γ𝑚 + Γ𝑓)/2π.𝑓     (2) 

Here the states |𝑚〉, |𝑓⟩ are N - 1 electron many-body states which do not include the 

photoelectron, and the 𝑇̂1 dipole transition operator has been replaced with the 1s annihilation 

operator 𝑠̂. No polarization term is included in 𝑇̂1 because the continuum final state of the 

photoelectron is inconsequential. It should be noted that while we are focusing on the case of Kα 

XES for the sake of being explicit, the approach described here is generalizable to any core-to-

core XES. A detailed derivation for going from Eq. (1) to Eq.(2) is given in chapter 8 of de Groot 

and Kotani [7]. For Kα XES, the lifetime broadenings Γ𝑚 and Γ 𝑓 are approximately constant and 

are equal to the core-hole broadenings of the 1𝑠 and 2𝑝 shells (Γ𝑠 and Γ𝑝), and 𝑇̂2 =

 ∑ (𝜖 ⋅ 𝑟)𝑠̂†𝑝̂𝑠,𝑝  is limited to the dipole transition operator connecting the six 2𝑝 fermionic modes 

to the two 1𝑠 fermionic modes. Eq. (2) considers all intermediate states which connect the final 

and initial states and is referred to here as the two-step approach.  

Eq. (2) is commonly used when discussing nonresonant XES [21]; however, another 

possible approximation is to take the XES equivalent of the final-state rule used in VTC-XES 

[42] and XAS [7, 26]. In this case, the sum over intermediate states in Eq. (2) is assumed to be 

dominated by the ground state in the presence of the deep core-hole |𝑖′〉 [43], which gives,  

𝑑𝜎𝑋𝐸𝑆
𝐾𝛼 (ω2)

𝑑𝜔2
∝ ∑ |

 〈𝑓|𝑇̂2|𝑖′〉

𝐸𝑓−𝐸𝑖′−𝜔2+𝑖(Γ𝑠+Γ𝑝)/2
|

2

(Γ𝑠 + Γ𝑝)/2π.𝑓    (3) 
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This approximation simplifies the problem considerably, as it requires only a single sum over the 

final states and will henceforth be referred to as the one-step approach. A full comparison 

between the two approaches will be explored in section IV.A. This can also be reformulated 

using a one-body Green’s function formalism as shown in supplemental information section SI-

II. Indeed, the Green’s function formalism is used in Quanty for calculating the spectrum object. 

B. Multiplet Ligand Field Theory 

For the calculations here we use an MLFT Hamiltonian which is the sum of an atomic 

contribution and a tight binding Hamiltonian,  𝐻 = 𝐻𝑎𝑡𝑜𝑚  +  𝐻𝑇𝐵. The atomic Hamiltonian 

accounts for the deep-core (1𝑠, 2𝑝) states as well as many-body Coulomb interactions 𝑈𝑖𝑗𝑘𝑙 

between core and 𝑑 states, and between individual 𝑑 states. The tight-binding Hamiltonian 𝐻𝑇𝐵 

describes the single particle energies of the 𝑑 and ligand states, as well as hopping between them. 

These two terms are given by 

𝐻𝑎𝑡𝑜𝑚 = ε𝑠 ∑ 𝑐̂𝑠
†𝑐̂𝑠𝑠  + ε𝑝 ∑ 𝑐̂𝑝

†𝑐̂𝑝𝑝 + ∑ 𝑈𝑑1𝑑2𝑑3𝑑4
𝑐̂𝑑1

† 𝑐̂𝑑2

† 𝑐̂𝑑3
𝑐̂𝑑4𝑑1𝑑2𝑑3𝑑4

+

∑ 𝑈𝑑1𝑝1𝑑2𝑝2
𝑐̂𝑑1

† 𝑐̂𝑝1

† 𝑐̂𝑑2
𝑐̂𝑝2𝑑1𝑑2𝑝1𝑝2

+ ∑ 𝑈𝑑1𝑠1𝑑2𝑠2
𝑐̂𝑑1

† 𝑐̂𝑠1

† 𝑐̂𝑑2
𝑐̂𝑠2𝑑1𝑑2𝑠1𝑠2

+ ∑ ℎ𝑝1𝑝2
𝑆𝑂 𝑐̂𝑝1

† 𝑐̂𝑝2𝑝1𝑝2
+

∑ ℎ𝑑1𝑑2

𝑆𝑂 𝑐̂𝑑1

† 𝑐̂𝑑2𝑑1𝑑2
,       (4) 

𝐻𝑇𝐵 = ε𝑑 ∑ 𝑐̂𝑑
†𝑐̂𝑑𝑑  + ε𝐿 ∑ 𝑐̂𝐿

†𝑐̂𝐿𝐿 + ∑ 𝑉𝛾𝛾′
𝐿𝐹 𝑐̂𝛾

†𝑐̂𝛾′𝛾𝛾′ .         (5) 

In these equations, the indices s and p indicate a sum over the 1s or 2p states of the absorbing 

metal atom, 𝑑 a sum over absorber 3𝑑 states, and 𝛾 a sum over the 3d and ligand states. The εs, 

ε𝑝, ε𝑑, and ε𝐿 terms are the centroids of the single-particle energies for the corresponding shells, 

𝑈𝑖𝑗𝑘𝑙 are the Coulomb matrix elements, and 𝑉𝛾𝛾
𝐿𝐹 (taken from the DFT tight binding Hamiltonian) 

encompasses the crystal field as well as couplings between the 3𝑑 and ligand states. Finally, ℎ𝑆𝑂 
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is the single-particle spin orbit coupling Hamiltonian ℎ𝑆𝑂 = 𝑙 ⋅ 𝑠.  The 𝑈𝑖𝑗𝑘𝑙 Coulomb terms are 

parameterized by the Slater-Condon F and G parameters corresponding to direct and exchange 

Coulomb interactions, as well as the many-body average screened Coulomb interactions 

𝑈𝑑𝑑 , 𝑈𝑝𝑑, and 𝑈𝑠𝑑 which encompass the spherically symmetric contribution to the multipole 

expansion [7]. It should be noted that for the case of Kα XES the terms 𝑈𝑝𝑑 and 𝑈𝑠𝑑 refer to the 

average interactions between the 2p, 3d and 1s, 3d orbitals respectively. In the case of highly 

anisotropic (layered) systems, it may become important to account for the difference in couplings 

on an orbital by orbital level [44]. However, given that the anisotropy of our systems is weak 

compared to that of layered compounds we expect that any error introduced by averaging will be 

negligible. Finally, the charge transfer energy Δ defines the energy required to transfer one 

electron from the ligand to the metal. The Slater-Condon parameters are also obtained from the 

radial wave functions of the DFT calculation, so that the only remaining free parameters are the 

many-body charge-transfer energy Δ and the many-body average screened Coulomb interactions 

𝑈𝑑𝑑 , 𝑈𝑝𝑑, and 𝑈𝑠𝑑.  

 These four free parameters are used to set the centroids of each shell according to the 

ligand field equations (see supplemental information section SI-III). Using the definitions of the 

ground state energy, a single, and double charge transfer, we can solve for ε𝑠, ε𝑝, ε𝑑 , 𝑎𝑛𝑑 ε𝐿. For 

the intermediate state this gives 

εs = −𝑛𝑑𝑈𝑠𝑑 ,   (6) 

ε𝑑 = (2Δ𝑛𝐿 − 𝑛𝑑
2𝑈𝑑𝑑 + 𝑛𝑑(𝑈𝑑𝑑 − 2𝑛𝐿𝑈𝑑𝑑) − 4𝑛𝐿𝑈𝑠𝑑)/(2(𝑛𝑑 + 𝑛𝐿)),    (7) 

ε𝐿 = 𝑛𝑑(−2Δ + 𝑈𝑑𝑑 + 𝑛𝑑𝑈𝑑𝑑 + 4𝑈𝑠𝑑)/(2(𝑛𝑑 + 𝑛𝐿)),   (8) 
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where 𝑛𝑑 and 𝑛𝐿 are the number of 3d electrons and number of ligand electron respectively. 

Note that centroids given by Eq. (6-8) will change for the initial (no core-hole) and final state (2p 

core-hole). More details on origin of the ligand field equation can be found in [45], [46], and all 

ligand field equations for the XES process can be found in the supplemental information section 

SI-III. 

   

4.3 Methods 

A. Computational 

 In this work we use the full-potential local-orbital electronic structure code FPLO [39] to 

calculate the tight binding Hamiltonian and the radial wavefunctions necessary for the Slater-

Condon F and G terms. The code Quanty [38] was used for the subsequent solution of the MLFT 

Hamiltonian and for the construction of the spectrum [16]. The interface between FPLO and 

Quanty was built by Heinze and Haverkort [45] following the framework developed by 

Haverkort et al. [16]. We used FPLO version 14.00-49-x96_64, with the Perdew-Wang 92 

exchange correlation functional. For additional information about the details of the DFT 

calculation please refer to supplemental information section SI-VI.  

Using band structure and density of states as a guide, the energy window of the down-

projection of the Wannier functions was tailored to the TM-3d and ligand-2p orbitals following 

the procedure described in [47]. It should be emphasized that the Wannier functions calculated 

within FPLO are not maximally localized. The fact that we use a tight binding Hamiltonian then 

requires that, along with a localization procedure that reduces the number of overall terms in the 

Hamiltonian, the Wannier functions are chosen such that they reproduce both the band energies 
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and the orbital character of the bands. The details of this step are explained in reference [48]. The 

DFT mean-field Coulomb interaction between the 3d electrons is subtracted from the tight-

binding Hamiltonian to prevent double counting; this is accounted for later with the 𝑈𝑑𝑑, 𝑈𝑝𝑑, 

𝑈𝑠𝑑,  and Δ free parameters. Only 2p-3d exchange Slater-Condon parameters are considered in 

the Kα XES calculation, neglecting the weak 1s-3d Coulomb exchange terms. Additionally, it is 

well known that 𝑈𝑝𝑑 and 𝑈𝑠𝑑 are close numerically, and are usually 0.5 eV – 2.0 eV larger than 

𝑈𝑑𝑑 [46]. Thus, we use the relations 𝑈𝑝𝑑/𝑈𝑑𝑑  =  1.15 and 𝑈𝑠𝑑/𝑈𝑑𝑑  =  1.20. Even though the 

ideal ratio will depend on the compound, this approximation will just result in the 𝑈𝑑𝑑 values 

being slightly off compared to the optimal value (on the order of 0.1 eV). For XES we expect 

that the more important constraint is that the 𝑈𝑝𝑑 and 𝑈𝑠𝑑 values are similar, given that they 

represent the influence of the core-hole on charge transfer when going between the intermediate 

and final states. After this, we are left with only 2 free parameters: 𝑈𝑑𝑑 and Δ, making it 

reasonable to do a full exploration of the remaining adjustable parameter space for each system. 

For most materials, the values of 𝑈𝑑𝑑 and Δ were determined by doing a grid search from 1 eV 

to 10 eV in 0.5 eV steps and we chose the spectrum whose features appeared to agree best with 

experiment. The two exceptions to this are NiO, which was taken from prior work using the 

same DFT + MLFT pipeline applied to XAS [16, 38], and PbCrO4 which required searching 

negative Δ values as explained in section IV.D. When considering charge transfer it is common 

to limit the number of accessible configurations (e.g. 3dN, 3dN+1 L1, 3dN+2 L2, …) to simplify the 

calculation. However, we opted to include all possible configurations (up to 3d10) for every 

system. This came at an increased computational cost but with the advantage of a more accurate 

and consistent procedure. 
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It is important to compare the theory with known trends in Kα XES. As an example we test 

the commonly asserted linear relationship between the Kα1 full width half-maximum (FWHM) 

and the number of unpaired 3𝑑 electrons [49]. Mulliken population analysis is often used for 

determining the 3d unpaired occupation [50], but this can yield unphysical results for diffuse 

systems. Instead, we calculate the expectation value of the 𝑆2 operator acting on the intermediate 

ground state wavefunction, which is consistent with the established MLFT framework. From this 

it is trivial to solve the equation, 

𝑆(𝑆 + 1) = ⟨𝑆̂2⟩; 𝑛𝑢𝑛𝑝𝑎𝑖𝑟𝑒𝑑 3𝑑 = 2𝑆,    (9) 

and hence extract the number of unpaired 3d electrons for the system. 

B. Experimental 

 MnO, Mn2O3, MnO2, and CrCl2 samples were prepared from greater than 97% reagent 

grade stock (Sigma Aldrich). All Mn samples were prepared by pressing a 1:1 mass mixture of 

powder sample and hexagonal boron nitride (BN) into a 13-mm diameter pellet before being 

encased in a polyimide pouch. The air and moisture sensitive CrCl2 sample was prepared by 

sealing powder in a quartz tube (0.01 mm wall thickness), in a nitrogen glovebox. 

The XES spectra for these samples were collected using the laboratory-based 

spectrometer described in detail in Jahrman, et al., [51]. Briefly, using a conventional x-ray tube 

(Varex VF80, Pd-Anode) operated at 100 W electron beam power (35 kV, 2 mA) samples were 

illuminated for 1.5 hours and 14 hours for the Mn samples and CrCl2 samples respectively, 

insuring at least 10,000 counts at the Kα1 peak for all spectra. Additional Cr2O3 and PbCrO4 

experimental spectra are from Jahrman, et al., [52] and the NiO spectra is digitized from Kawai, 

et al. [53]. 
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C. Data Analysis 

 To compare spectral features quantitatively between experiment and theory and across 

samples, we have extracted the Kα1 FWHMs, Kα2 FWHMs, and Kα1:Kα2 integral ratios. Kα 

XES is complicated by the presence of shoulders and additional multiplet features within Kα1 

and Kα2 peaks, usually making it necessary to use more than two peak functions (Lorentzian or 

Voigt) to achieve the most accurate fit to a spectrum [54]. Therefore, to extract the Kα-FWHM 

parameters, we have used linear interpolation between data points which lie on either side of the 

half-maximum crossing points following Lafuerza et al., [20]. For the Kα1:Kα2 integral intensity 

ratio, individual peaks must be extracted from the overall spectra to accurately measure their 

relative areas. This is done using two to four Voigt functions to achieve an approximate line 

shape, from which we extract integral intensities. The fitting procedure follows Jabua [55] and 

Voigt fits for all compounds are presented in the supplemental information section SI-V.  

Unless otherwise stated, all spectra have been integral normalized and shifted to align the 

maximum of Kα1 at zero. Also, all calculated spectra are broadened using lifetime values in 

Campbell and Papp [56], which are reported for each main peak in Table 1. A 1.0 eV Gaussian 

broadening for experimental resolution was applied to all spectra except that of MnF2, where 0.5 

eV was used due to the higher resolution of the spectrometer used in that experiment [54]. 

Additional information about the extraction of the FWHM and how the spectra were broadened 

can be found in supplemental information section SI-V.  

4.4 Results and Discussion 

 This section is organized as follows. In IV.A we address the validity of the one-step 

approach compared to the two-step approach and demonstrate that they produce nearly identical 



 

84 
 

results. All subsequent calculations use the one-step approach which greatly reduces 

computational costs. In IV.B we compare theory and experiment for complete spectra and 

address the limitations of our approach by system-specific discussions. In IV.C we compare 

theory and experiment for a few spectral parametrizations, including the FWHM of the two 

peaks, and the Kα1:Kα2 intensity ratio. We also show how a key trend involving the Kα1 FWHM 

and number of unpaired 3d electrons is well reproduced by theory. Finally, in IV.D we address 

the remaining model limitations and discuss possible methods for overcoming them. 

A. One-Step Approach versus Two-step Approach 

 

The question naturally arises about the equality (or inequality) of the one-step and two-

step methods. There is little experimental work on this question. Glatzel, et al., [57] compared 

the Mn Kβ XES of 55Fe2O3 undergoing electron orbital capture from the 1s shell with that of 

MnO excited by high energy x-rays. Distinct differences between the two spectra were observed, 

and it was proposed that multiple intermediate states need to be considered for a complete 

description of the process. While this suggests that the simplified process described by Eq. (3) 

may be insufficient for Kβ XES, the approximation has not been tested extensively, and not for 

Kα XES. However, if the simplified approach (only considering the lowest energy intermediate 

state) is indeed justified, then the greater theoretical complexity and much higher computational 

cost of the full excitation/de-excitation calculation can be avoided. 

To address this question in detail, we compare the one-step and two-step approaches in 

Figure 3, where the left panel shows the energy transfer plane for NiO and PbCrO4. Both 

approaches are calculated using the same DFT + MLFT cluster model in accordance with the 

procedure laid out in section III.A. The horizontal axis (excitation energy) corresponds to the 1s 
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XPS and is the result of annihilating as 1s electron. The non-resonant XES corresponds to the 

diagonal line through the energy transfer versus excitation energy plane, which incorporates the 

decay from all of the 1s XPS final states to the accessible 2p hole XES final states. By 

integrating out the 𝜔1 dependence, which is equivalent to integrating along the diagonal through 

the plane (𝜔1 − ε𝑐𝑜𝑟𝑒ℎ𝑜𝑙𝑒 = 𝜔1 − 𝜔2)we obtain the two-step nonresonant XES as given by Eq. 

(2).. The right panel of Figure 3 compares the two approaches, and we note that there is little 

difference between them. This is intriguing as prior work on XPS calculated using the DFT + 

MLFT cluster model has been shown to perform poorly compared to techniques such as DFT + 

Dynamical Mean Field Theory (DMFT) because it lacks non-local relaxation effects which occur 

in response to the core-hole [58]. We expect that this is because the CTC-XES signal only 

involves electron transfer between core states and is therefore only weakly sensitive to such 

long-ranged effects. While the same DFT step (a few hours computation time on a modern CPU) 

is used for both approaches, the MLFT portion of the two-step approach requires 10 to 100 times 

more computational time than for the one-step approach. Given the excellent agreement between 

the two approaches, we use the one-step approach for all subsequent calculations. 
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Figure 3: Calculated results of the one-step and two-step approaches for transition metal systems 

NiO (a, b) and PbCrO4 (c, d). (Left) Two-step XES plane calculated from Eq (1). The two 

dashed lines in subplots (a) and (c) demonstrate how the intermediate states with different 

excitation energies all line up along a line with slope 1 (constant Emission Energy). By 

integrating along this line, we calculate the nonresonant XES as it is described by Eq. (2). 

(Right) Calculations of the one-step approach (blue) compared to those of the two-step approach 

(orange), with differences between the two approaches also shown (grey). 

 

 

B. Comparison Between Theory and Experiment (Full Spectra)  

Below we present a full spectral comparison between the calculated and experimental 

spectra for 8 different transition metal compounds. We briefly discuss the general strengths and 

weaknesses of the results and conclude by addressing a few interesting features of individual 

spectra.  
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Calculation Parameters 

 

Table 1: The Slater-Condon, the spin-orbit splitting terms ζ, charge-transfer Δ and 𝑈𝑑𝑑, and 

lifetime broadening terms for each material, all in units of eV. 

The Slater-Condon, charge-transfer, spin-orbit coupling, and broadening parameters for 

each material are presented in Table 1. Of the eight materials considered, NiO and MnO are both 

well studied Mott insulators, and are commonly used as standard test beds for investigating 

highly correlated materials [59]. Both have rock-salt crystal structures and are thus highly 

symmetric with perfect octahedral coordination, simplifying their treatment. In contrast, MnF2, 

MnO2, Cr2O3, and CrCl2 all have single site, distorted octahedral coordination. Mn2O3 is also 

distorted octahedral but has two unique Mn sites which must be independently considered before 

being averaged together. Finally, PbCrO4 has a distorted tetrahedral symmetry, the lowest 

symmetry system being studied, in addition to being the only 3𝑑0 system (nominally no 3𝑑 

electrons).  
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Figure 4: Theoretical (blue) and experimental (orange) Kα XES for NiO (a), MnF2 (b), CrCl2 

(c), MnO (d), Cr2O3 (e), Mn2O3 (f), PbCrO4 (g), and MnO2 (h). Difference curves (gray) show 

experiment minus theory and are shown in the lower panel of each subplot. All theory spectra 

were calculated following the one-step approach laid out in Eq. (3) and have been shifted so that 

the Kα1 peaks align with experiment. 

The calculated and experimental spectra for all materials are presented in Figure 4. For 

most of the materials studied we observe good agreement between theory and experiment, at the 

same level or higher compared to other DFT + MLFT calculations [25, 26, 60] and alternative 

ab-initio techniques such as CI [61] or Discrete-Variational (DV) Xα [62]. The remaining 

spectral discrepancies can be discussed in terms of line shape differences or small disagreements 

in peak-to-peak splitting. 

While the overall line shapes are in good agreement, there is a systematic trend of the 

Kα1 peaks being too narrow (under-broadened), the Kα2 peaks being too wide (over-broadened), 

and both peaks exhibiting slightly inaccurate asymmetries. One possible explanation for these 

discrepancies is that the modified Slater-Condon terms are incorrect, leading to inaccurate 

exchange terms between the 2p and 3d states and thus adversely affecting the multiplet splittings. 

However, this would affect the Kα1 and Kα2 states roughly equally and therefore can be ruled 

out. It is tempting to attribute the broadening issue entirely to errors in the core-hole lifetime 

values, since the overall agreement can be improved significantly by allowing these lifetimes to 

vary (Figure SI-V 3). However, to achieve best fits this leads to unphysical cases in which the 

Kα2 broadenings are comparable to the Kα1 broadenings, which is not possible due to Coster-

Kronig decay [63]. Allowing the broadening to vary from tabulated values also causes a 
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deviation of theory from experiment in the high energy tails of Kα1 (Figure SI-V 4), which 

together with the previous point make broadening alone unlikely to be the culprit.  

With these explanations being ruled out, the error in line shape is more likely due to 

DFT’s tendency to estimate too large a coupling between the 3d and ligand states. The off-

diagonal coupling terms of the 𝐻𝑇𝐵 indirectly modulates the strength of the exchange interaction 

between the 3d and 2p levels by controlling the configuration of the 3d shell, as well as directly 

modulating the energies of the valence level states. Reducing these off-diagonal coupling terms 

would influence multiple factors including the relative multiplet splittings and the position of any 

low binding energy Kα1 satellites that sit near the Kα2 peak. Future work is needed to further 

explore this issue, with one possibility being the use of LDA + U which could help better 

localize the 3d electrons. Finally, we note that other work has shown how more advanced MLFT 

models that incorporate separate Slater-Condon couplings between the various crystal field split 

valence states can affect the broadening of the 2p1/2 and 2p3/2 levels [17].  

The peak-to-peak splitting is dominated by the relativistic 2p spin-orbit splitting, 

parameterized by the coupling term ζ2p, which separates emission from the 2p3/2 and 2p1/2 levels. 

This spin-orbit coupling is a largely intrinsic property and is not expected to change significantly 

when going from an atomic to solid-state system [64]. The errors in the calculated peak-to-peak 

splittings are  of order a few tenths of an eV, with NiO being an outlier with a peak splitting error 

of ~1 eV. Although subtle changes in the Slater-Condon and charge transfer terms may explain 

some of the error and result in peak-to-peak splitting variations on the order of half an eV, the 

multiple interaction terms in the Hamiltonian make it difficult to pinpoint a single source of 

error. This discrepancy is also noted in empirical MLFT calculations performed by Glatzel [49]. 
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Turning now to some intriguing features of the individual spectra, MnF2 exhibits an 

asymmetric doublet feature in the Kα1 as can be seen in Figure 5. This doublet splitting is 

approximately 1 eV and can only be seen with high resolution instruments [54]. This feature is 

well documented [65], and is a result of large exchange interaction allowing individual multiplet 

peaks to be resolved. While this same doublet feature is seen in the theory, the relative intensities 

of the multiplet peaks are slightly off compared to the experimental ones, causing the overall 

peak to broaden together into a flatter peak shape. However, this demonstrates how even in a 

spectroscopy with objectively simple line shapes, individual multiplet peaks can still be 

interpreted for the role they play [49] in much the same way as in XPS [5, 66] or RIXS [23]. 
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Figure 5: MnF2 experiment compared to theory for various lifetime (0.1-1.7 eV) and 

experimental broadening values (0-0.5 eV). The broadening scheme for each of these calculated 

spectra follows that described in section SI-V. This demonstrates how the multiplet doublet that 

is visible in the experimental Kα1 peak is also present in the theoretical results. However, this 

doublet becomes obscured by the broadening. 

Shifting from the details of fine spectral features to full spectral trends across compounds, to  

demonstrate a potential application we chose to reproduce a key result from a 2018 study by 

Jahrman et al. [52] which identified nonresonant XES as a promising analytical method for 

determining the ratio of Cr(VI) to Cr(III) in chemically challenging matrices, such as plastics. 

Standard wet chemical methods are susceptible to species interconversion and incomplete 

extraction, which has the potential to systematically underestimate the mass fraction of Cr(VI) 

[67, 68]. However, the Kα XES spectra for Cr(III) and Cr(VI) are distinct enough to allow for a 

linear combination to be fit to an unknown composition ratio. In Figure 6 we show that we can 

reproduce experimentally observed differences between the Cr(III) to Cr(VI) Kα XES using 

Cr2O3 and PbCrO4, as is shown from the residuals in grey. The most notable difference is the 

high peaked, narrow Kα1 signal of Cr(VI), which is a consequence of the 6+ formal oxidation 

state, leading to a distinct difference in the FWHM and intensities of the Kα1 peaks. 
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Figure 6: (a) Experimental (solid) and theory (dashed) spectra for Cr2O3 and PbCrO4. The Kα1 

peak of the calculated PbCrO4 (Cr(VI)) spectrum is shifted to 0 eV and the Kα1 peak of the 

calculated Cr2O3 (Cr(III)) spectrum is shifted to match the splitting between the experimental 

spectra. (b) Difference curves for Cr(VI) experiment – Cr(III) experiment (solid) and Cr(VI) 

theory – Cr(III) theory (dashed). (c) Theoretical XES spectra for two Cr(III) compounds (CrF3 

and Cr2O3) and two Cr(VI) compounds (Cr2O3 and PbCrO4). The inset in subplot (c) shows an 

enlarged view of the spectra between -10 eV and -7 eV, demonstrating that while the spectra of 

Cr compounds with the same oxidation state are very similar, they are not identical. 
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 This distinction between Cr2O3 and PbCrO4 Kα XES was demonstrated by Jahrman et al. 

[52] to be constant across Cr(III) and Cr(VI) materials. We found that this observation also held 

true for our calculated spectra, as demonstrated in the bottom of Figure 6. Both of the Cr(VI) 

compounds are tetragonally coordinated with oxygen and the Cr(III) compounds are octahedrally 

coordinated with fluorine and oxygen respectively. We note that the simulated Kα XES spectra 

are relatively insensitive to the particular compound, and are instead sensitive to the nominal 

oxidation state and environmental symmetry, again agreeing with trend observed in experiment 

by Jahrman et al. [52]. 

 

C. Comparison Between Experiment and Theory (Spectral 

Characteristics) 

 

Neglecting interactions, the Kα1:Kα2 integral ratio is naively expected to be 2:1 due to the 

4:2 ratio of occupancy of the 2𝑝3/2 and 2𝑝1/2 shells. However, the ratio is generally skewed by 

mixing between these states due to Coulomb interactions between the 2𝑝 core-hole and 3𝑑 

electrons[66]. In the top panel of Figure 7 we compare theory and experiment. The deviation 

from the 2:1 ratio is most clear for CrCl2, MnO and Mn2O3, each of which have strong shoulders 

on the lower energy side of Kα1. We note that the extracted ratio is highly dependent on the 

quality of the Voigt fits that are used to deconvolve the Kα1 and Kα2 peaks (Figure SI-IV 1). The 

scatter plot in Figure 8 (a) shows the extent of correlation between theory and experiment.  

The FWHM of the peaks are a common metric for characterizing the Kα XES [49, 53, 

55], even though the presence of many distributed multiplet features can impede its easy 
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interpretation. As with the Kα1:Kα2 ratio there is generally good correlation between theory and 

experiment; see also the bottom panel of Figure 7 and Figure 8 (b). The strongest outlier is the 

PbCrO4 Kα2 FWHM. This, as well PbCrO4’s low Kα1:Kα2 ratio, can be attributed to a 

combination of the 2𝑝, 3𝑑 Coulomb exchange interaction and valence level hybridization. These 

issues will be discussed in greater detail in section IV.D, where we address the limitations of the 

model. 
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Figure 7: Comparison of theory and experiment for (a) Kα1:Kα2 integral ratio and (b) FWHM 

for the various compounds. The FWHM values were calculated according to the procedure in 

Figure SI-V 1. 

 

Figure 8: Trendlines between theory and experiment values for (a) the Kα1:Kα2 integral ratio 

and (b) the FWHM of Kα1 and Kα2. The values plotted are the same as those for the bar charts in 

Figure 7. 

Using the FWHM values extracted from the calculated spectra, we can now explore an 

often-stated rule of multiplet theory that Kα1 linewidth is directly proportional to the exchange 

interaction between the 2p and 3d orbitals, 𝐺𝑝𝑑
1  and 𝐺𝑝𝑑

3  [6]. This will allow us to test a known 

experimental trend across a set of compounds and confirm an important caveat first raised by 

Kawai [50]. Specifically, the charge-transfer state in the presence of the core-hole will 

necessarily influence the Kα1 FWHM because the number of unpaired 3d electrons will change 

in response to the core-hole potential. Determining whether the theory follows the established 

FWHM trend provides an important litmus test, as the same charge-transfer parameters 𝑈𝑑𝑑 and 
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Δ which determine the fits to experiment also determine the number of unpaired 3d electrons in 

the intermediate state.  

This dependence on the core-hole 𝑛𝑢𝑛𝑝𝑎𝑖𝑟𝑒𝑑 3𝑑 is the origin of the similarity between the 

Kα XES of compounds such as MnO and Mn2O3 [49], and FeO and Fe2O3 [50], with their nearly 

identical metal ion spin states even though they have different classical oxidation. The derivation 

for the linear relationship between the Kα1 FWHM and the number of unpaired 3d electrons 

relies on the use of a free ion model [69] and has a number of key assumptions, most notably that 

the orbital angular momentum of the 3d states is quenched (𝐽 = 𝑆), simplifying the coupling 

between the final state 2p hole and the valence shell [49]. As such, this linear trend is expected to 

be more of a general rule, rather than a hard and fast law. 

 

 

Figure 9: Kα1 FWHM vs Number of Unpaired 3d Electrons for Cr (left) and Mn (right). 

Reported values of FWHM are calculated from theorical results broadened with lifetime values 

reported in Table 1. Both series exhibit the expected linear trend. FWHM values were calculated 

according to the procedure laid out in Figure SI-V 1. 
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3d Orbital Occupations and Kα1 FWHMs 

 

Table 2: Expectation values for the 𝑛𝑑 number operator and 𝑆2 operator, both calculated over 

the 3d fermionic modes. The number of unpaired 3d electrons (calculated from Eq. (9)) in the 

presence of a core-hole, the Kα1 FWHM (calculated from theory), and the nominal number of 

total 3d electrons are also reported. 𝑆2 expectation values are reported in units of ℏ2 and Kα1 

FWHM are reported in units of eV. 

The number of unpaired 3d electrons in the presence of the core-hole and the Kα1 FWHM 

values are reported in Table 2 and are plotted in Figure 9 for the Cr and Mn series. As addressed 

earlier, PbCrO4 is nominally a d0 system. However, when hybridization with the ligand orbitals 

is considered, the ground state occupation’s expectation value becomes approximately 1, which 

increases to approximately 2 when considering the effect of charge-transfer in the presence of the 

core-hole. The expected linear relationship is only observed when considering these 

multiconfigurational effects, confirming Kawai’s findings that they are necessary for accurately 

representing the excited magnetic state of the system [50]. 

 

D. Effect of 𝚫 and 𝑼𝒅𝒅 on the spectrum, and limitations of MLFT 
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As noted above a long-term goal of this research program is a fully ab-initio, predictive 

treatment of Kα XES with no adjustable parameters. Here, the traditional MLFT parameter space 

has been reduced to only two dimensions; however, the spectra are still quite sensitive to Δ and 

𝑈𝑑𝑑. The interplay of the tuning parameters for charge transfer and Coulomb interactions adds 

complexity to the spectra, making it difficult to isolate the origin of certain spectral features. 

However, the reduced parameter space still simplifies the process of fitting theory to experiment 

and allows more detailed exploration than previously possible. 
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Figure 10: Parameter space exploration of NiO for a range of Δ values (2.0, 4.0, 6.0, and 8.0 eV) 

𝑈𝑑𝑑 values of 2.0 eV (a, b) and 8.0 eV (c, d). The left panels have Lorentzian broadening of only 

Γ𝐿𝑜𝑟 = 0.1 eV while the right panels have Γ𝐿𝑜𝑟 = 2.0 eV.  

In Figure 10 we investigate the effect of 𝑈𝑑𝑑 and Δ on DFT + MLFT calculations for 

NiO. Scaling Δ has the effect of widening the distance between the d and ligand centroids, 

thereby increasing the energy of the gap between occupied and unoccupied valence states. This 

is the origin of the increase in multiplet peak splitting with Δ as seen in Figure 10 and results in 

low-energy tails in the broadened spectra in the right column. Ideally these can be dealt with by 

fitting to the features which do appear in experimental spectra (additional shoulders or 

asymmetry), but this is not a trivial task as even within this reduced parameter space different 

unique choices of 𝑈𝑑𝑑 and Δ can still produce similar spectra, making the correct parameter 

choice ambiguous. 

   

Figure 11: PbCrO4 spectra for 𝑈𝑑𝑑 = 8 and −8 ≤ ∆ ≤ 8.  The experimental spectrum is shown 

as a grey dashed line for reference. 
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The extremes of the DFT + MLFT model are well demonstrated by PbCrO4. The Cr in 

PbCrO4 has nominally zero d electrons, with 20!/(10!)2 ~ 180,000 possible electron 

configurations, making this the most computationally expensive calculation of all the materials 

in this manuscript. By scanning over Δ, as shown in Figure 11, it becomes clear that the double 

peak feature underneath Kα2 is modulated by the charge-transfer energy while the Kα1 is entirely 

insensitive to changes in Δ. In non-DFT augmented MLFT, negative values of Δ are uncommon 

but do occur for highly oxidized systems with more covalent character [70]. The lack of 

sensitivity of Kα1 to Δ is surprising, given that number of unpaired 3d electrons is also 

modulated by Δ. As Δ increases (and 𝑈𝑑𝑑 is held constant), the splitting between the 𝑑 and 

ligand levels increases and the lowest energy valence states have less 𝑑 character, leading to a 

decrease in both the total number of 3𝑑 electrons and the number of unpaired 3𝑑 electrons in the 

intermediate ground state. This would appear to contradict the earlier conclusion about the 

relationship between the number of unpaired 3d electrons and the Kα1 FWHM. However, the 

best fit between experiment and theory for PbCrO4 (which depended entirely on variability in 

Kα2) also resulted in a Δ value which gave the appropriate number of unpaired 3d electrons.  

 

4.5 Conclusion 

We have demonstrated that a DFT + MLFT approach based on the Quanty + FPLO 

framework can achieve a nearly first principles calculation of K CTC-XES for 3d TM systems, 

with only two remaining undetermined coefficients. In so doing, we have provided a detailed 

guide for such ab-initio calculations and demonstrated a simplifying approximation for 

calculating XES in terms of the one-step versus two-step approach. Future work should involve 
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further validation of the one-step approach given the potential it has for strongly decreasing the 

computational effort required. Additionally, we have successfully reproduced qualitative and 

quantitative trends in Kα spectra with regards to oxidation and spin state. The use of only deep 

core levels in CTC-XES simplifies the dependence of the spectrum on these features, making it 

clear that the charge transfer state and crystal field effects are well reproduced by the DFT + 

MLFT approach. In particular, we were able to demonstrate the direct correlation between the 

FWHM and oxidation state, which has been well documented experimentally, has not before 

been validated by purely theoretical calculations. The overall satisfactory agreement between the 

experimental spectra with the nearly ab-initio calculations indicate that this technique could be 

immediately applicable to predictive tasks. 

There are several directions for future work: 1) It would be valuable to extend this DFT + 

MLFT approach to other highly correlated materials such as lanthanide and actinide systems 

with open f shells, or other emission lines such as Kβ XES which would have even more 

sensitivity to the local environment due to the stronger coupling between 3p and 3d orbitals. This 

ties into 2) the need for a more complete picture of the domain in which DFT + MLFT 

approaches are suitable. Charge neutral spectroscopies such as XAS and RIXS have already been 

shown to be well reproduced by the same types of cluster model we use here [17, 26, 28], but in 

XPS the cluster model does not seem to sufficiently capture the non-local screening response to 

the core-hole [58, 71]. Our work implies that the non-local screening is less of a concern for Kα 

XES due to its deep core-to-core nature, but this may not hold for higher energy emission lines. 

Future work should be focused on investigating the divide between charge-neutral and non-

charge-neutral spectroscopies and characterizing the regime in which DFT + MLFT techniques 

are accurate.  3) Improvements to the theoretical techniques are also possible. For example, 
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future work could consider constrained DFT calculations that include a 1s core-hole. This would 

provide a more accurate picture of the valence level couplings in the intermediate state which 

could be used to address the non-local screening issue. The current DFT framework could also 

be adjusted to account for the different Coulomb couplings between the core and valence levels 

according to their spatial extents as done by Krüger [44]. Finally, and with the highest 

fundamental impact, 4) future work should focus on the elimination of the remaining free 

parameters. Constrained DFT may offer another avenue for calculating both Δ and 𝑈𝑑𝑑 [72] 

using frozen orbitals [73]. Further developments of DFT + DMFT techniques [27] would provide 

a better representation of the hybridization between the ligand and transition metal ions. The use 

of multiple experimental spectra that contain sufficiently independent information could be used 

to constrain or entirely remove the free parameters through simultaneous fitting. In general, there 

should be a strong focus on the development of accurate methods for calculating charge-transfer 

parameters 𝑈𝑑𝑑 and Δ given that they are the only remaining roadblocks to the goal of a fully ab-

initio theory. 

Acknowledgements 

We thank Yiming Chen, Paul Bagus, Marius Retegan, and Maurits Haverkort for fruitful 

discussions about appropriate methods for calculating XES. We would also like to thank Simon 

Heinze and Martin Bras for the many hours spent helping debug and explain Quanty scripts. JJK 

and JJR acknowledge support from the Theory Center for Materials and Energy Spectroscopies 

(TIMES) at SLAC funded by DOE BSE Contract DE-AC02-76SF00515. CAC was supported by 

the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-

2140004. Any opinions, findings, and conclusions or recommendations expressed in this material 

are those of the author(s) and do not necessarily reflect the views of the National Science 



 

104 
 

Foundation. GTS acknowledges support from the U.S. Department of Energy, Nuclear Energy 

University Program under contract DE-NE0009158. 

 

Citations 

1. Fermi, E., Sulla quantizzazione del gas perfetto monoatomico. Rendiconti Lincei, 1926. 

3: p. 145-149. 

2. Bloch, F., Über die Quantenmechanik der Elektronen in Kristallgittern. Zeitschrift für 

Physik, 1929. 52(7): p. 555-600. 

3. Pauling, L., The Nature of the Chemical Bond and the Structure of Molecules and 

Crystals. 1960. 

4. Keast, V.J., Application of EELS in Materials Science. Materials Characterization, 2012. 

73: p. 1-7. 

5. Bagus, P.S., E.S. Ilton, and C.J. Nelin, The interpretation of XPS spectra: Insights into 

materials properties. Surface Science Reports, 2013. 68(2): p. 273-304. 

6. Glatzel, P. and U. Bergmann, High resolution 1s core hole X-ray spectroscopy in 3d 

transition metal complexes—electronic and structural information. Coordination 

Chemistry Reviews, 2005. 249(1): p. 65-95. 

7. Frank de Groot, A.K., Core Level Spectroscopy of Solids. 1 ed. 2008, Boca Raton: Taylor 

& Francis Group. 

8. Cohen, A.J., P. Mori-Sánchez, and W. Yang, Challenges for Density Functional Theory. 

Chemical Reviews, 2012. 112(1): p. 289-320. 

9. De Groot, F.M.F., et al., 2p x-ray absorption spectroscopy of 3d transition metal systems. 

Journal of Electron Spectroscopy and Related Phenomena, 2021. 249: p. 147061. 

10. Blaha, P., et al., WIEN2k: An APW+lo program for calculating the properties of solids. 

The Journal of Chemical Physics, 2020. 152(7): p. 074101. 

11. Vinson, J., et al., Bethe-Salpeter equation calculations of core excitation spectra. 

Physical Review B, 2011. 83(11): p. 115106. 

12. Vorwerk, C., et al., Bethe–Salpeter equation for absorption and scattering spectroscopy: 

implementation in the exciting code. Electronic Structure, 2019. 1(3): p. 037001. 

13. Ankudinov, A.L., et al., Real-space multiple-scattering calculation and interpretation of 

x-ray-absorption near-edge structure. Physical Review B, 1998. 58(12): p. 7565-7576. 

14. Bagus, P.S., et al., Mechanisms responsible for chemical shifts of core-level binding 

energies and their relationship to chemical bonding. Journal of Electron Spectroscopy 

and Related Phenomena, 1999. 100(1): p. 215-236. 

15. Vila, F.D., et al., Equation-of-Motion Coupled-Cluster Cumulant Green’s Function for 

Excited States and X-ray Spectra. Frontiers in Chemistry, 2021. 9: p. 734945. 

16. Haverkort, M.W., M. Zwierzycki, and O.K. Andersen, Multiplet ligand-field theory using 

Wannier orbitals. Physical Review B, 2012. 85(16): p. 165113. 

17. Krüger, P., First-Principles Calculation of Ligand Field Parameters for L-Edge Spectra 

of Transition Metal Sites of Arbitrary Symmetry. Symmetry, 2023. 15(2): p. 472. 



 

105 
 

18. Ikeno, H., et al., Multiplet calculations of L2,3 x-ray absorption near-edge structures for 

3d transition-metal compounds. Journal of Physics: Condensed Matter, 2009. 21(10): p. 

104208. 

19. Abu-Samak, M., et al., Electronic structure and energy gaps evaluation of perovskite 

manganite single crystals using XES and XAS spectroscopy. Journal of Electron 

Spectroscopy and Related Phenomena, 2021. 250: p. 147084. 

20. Lafuerza, S., et al., Chemical Sensitivity of Kβ and Kα X-ray Emission from a Systematic 

Investigation of Iron Compounds. Inorganic Chemistry, 2020. 59(17): p. 12518-12535. 

21. Fazinić, S., et al., Chemical sensitivity of the Kα X-ray emission of Ti and Cr compounds 

induced by 2 MeV protons. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022. 

195: p. 106506. 

22. Miedema, P.S., et al., Iron 1s X-ray photoemission of Fe2O3. Journal of Electron 

Spectroscopy and Related Phenomena, 2015. 203: p. 8-13. 

23. Zimmermann, P., M.O.J.Y. Hunault, and F.M.F. de Groot, 1s2p RIXS Calculations for 3d 

Transition Metal Ions in Octahedral Symmetry. Journal of Spectroscopy, 2018. 2018: p. 

50. 

24. Zimmermann, P., et al., Quanty4RIXS: a program for crystal field multiplet calculations 

of RIXS and RIXS–MCD spectra usingQuanty. Journal of Synchrotron Radiation, 2018. 

25(3): p. 899-905. 

25. Hasan, M.N., et al., Re-Dichalcogenides: Resolving Conflicts of Their Structure–

Property Relationship. Advanced Physics Research, 2022. 1(1): p. 2200010. 

26. Gorelov, E., et al., MLFT approach with p-d hybridization for ab initio simulations of the 

pre-edge XANES. Radiation Physics and Chemistry, 2020. 175: p. 108105. 

27. Lüder, J., et al., Theory of L-edge spectroscopy of strongly correlated systems. Physical 

Review B, 2017. 96(24): p. 245131. 

28. Agrestini, S., et al., Long-range interactions in the effective low-energy Hamiltonian of 

Sr2IrO4: A core-to-core resonant inelastic x-ray scattering study. Physical Review B, 

2017. 95(20): p. 205123. 

29. Zhang, W., et al., Tracking excited-state charge and spin dynamics in iron coordination 

complexes. Nature, 2014. 509(7500): p. 345-348. 

30. Alonso-Mori, R., et al., Femtosecond electronic structure response to high intensity 

XFEL pulses probed by iron X-ray emission spectroscopy. Scientific Reports, 2020. 

10(1): p. 16837. 

31. Khakhulin, D., et al. Ultrafast X-ray Photochemistry at European XFEL: Capabilities of 

the Femtosecond X-ray Experiments (FXE) Instrument. Applied Sciences, 2020. 10,  

DOI: 10.3390/app10030995. 

32. Simonelli, L., et al., High resolution x-ray absorption and emission spectroscopy of 

LixCoO2 single crystals as a function delithiation. Journal of Physics: Condensed Matter, 

2017. 29(10): p. 105702. 

33. Simonelli, L., et al., Role of Manganese in Lithium- and Manganese-Rich Layered Oxides 

Cathodes. The Journal of Physical Chemistry Letters, 2019. 10(12): p. 3359-3368. 

34. Tetef, S., N. Govind, and G.T. Seidler, Unsupervised machine learning for unbiased 

chemical classification in X-ray absorption spectroscopy and X-ray emission 

spectroscopy. Physical Chemistry Chemical Physics, 2021. 23(41): p. 23586-23601. 



 

106 
 

35. Timoshenko, J., et al., Supervised Machine-Learning-Based Determination of Three-

Dimensional Structure of Metallic Nanoparticles. The Journal of Physical Chemistry 

Letters, 2017. 8(20): p. 5091-5098. 

36. Chen, Y., et al., Database of ab initio L-edge X-ray absorption near edge structure. 

Scientific Data, 2021. 8(1): p. 153. 

37. Holden, W.M., G.T. Seidler, and S. Cheah, Sulfur Speciation in Biochars by Very High 

Resolution Benchtop Kα X-ray Emission Spectroscopy. The Journal of Physical 

Chemistry A, 2018. 122(23): p. 5153-5161. 

38. Haverkort, M. Quanty - a quantum many body scripting language. 2022; Available from: 

https://quanty.org/. 

39. Koepernik, K. and H. Eschrig, Full-potential nonorthogonal local-orbital minimum-basis 

band-structure scheme, version 14.00-49 [https://www.FPLO.de]. Physical Review B, 

1999. 59(3): p. 1743-1757. 

40. Marguí, E., I. Queralt, and E. de Almeida, X-ray fluorescence spectrometry for 

environmental analysis: Basic principles, instrumentation, applications and recent 

trends. Chemosphere, 2022. 303: p. 135006. 

41. Kramers, H.A. and W. Heisenberg, Über die Streuung von Strahlung durch Atome. 

Zeitschrift für Physik, 1925. 31(1): p. 681-708. 

42. Mortensen, D.R., et al., Benchmark results and theoretical treatments for valence-to-core 

x-ray emission spectroscopy in transition metal compounds. Physical Review B, 2017. 

96(12): p. 125136. 

43. Roychoudhury, S., et al., Changes in polarization dictate necessary approximations for 

modeling electronic deexcitation intensity: Application to x-ray emission. Physical 

Review B, 2022. 106(7): p. 075133. 

44. Krüger, P., Ab initio calculation of ligand field multiplet parameters for transition metal 

L-edge spectra. Radiation Physics and Chemistry, 2020. 175: p. 108051. 

45. Heinze, S., Material Specific Simulations of Many-Body Electron Dynamics, in 

Combined Faculty of Natural Sciences and Mathematics. 2021, Heidelberg University: 

Heidelberg. 

46. Ballhausen, C., Introduction to ligand field theory. McGraw-Hill Series in Advanced 

Chemistry. 1962. 

47. Koepernik, K., et al., Symmetry Conserving Maximally Projected Wannier Functions. 

Physical Review B, 2021. 107(23): p. 235135. 

48. Eschrig, H. and K. Koepernik, Tight-binding models for the iron-based superconductors. 

Physical Review B, 2009. 80(10): p. 104503. 

49. Glatzel, P., Thesis: X-Ray Fluorescence Emission Following K Capture and 1s 

Photoionization of Mn and Fe in Various Chemical Environments, in Department of 

Physics. 2001, University of Hamburg. p. 137. 

50. Kawai, J., et al., Charge-transfer effect on the linewidth of Fe Kα x-ray fluorescence 

spectra. Physical Review B, 1994. 50(16): p. 11347-11354. 

51. Jahrman, E.P., et al., An improved laboratory-based x-ray absorption fine structure and 

x-ray emission spectrometer for analytical applications in materials chemistry research. 

Review of Scientific Instruments, 2019. 90(2): p. 024106. 

52. Jahrman, E.P., G.T. Seidler, and J.R. Sieber, Determination of Hexavalent Chromium 

Fractions in Plastics Using Laboratory-Based, High-Resolution X-ray Emission 

Spectroscopy. Analytical Chemistry, 2018. 90(11): p. 6587-6593. 



 

107 
 

53. Kawai, J., M. Ohta, and T. Konishi, Chemical Effects in High-Resolution Nickel Kα X-

Ray Fluorescence Spectra. Analytical Sciences, 2005. 21(7): p. 865-868. 

54. Jabua, M., et al., Kα X-ray emission in manganese compounds. Spectrochimica Acta Part 

B: Atomic Spectroscopy, 2016. 121: p. 11-17. 

55. Jabua, M., Ultimate Resolution X-ray Spectroscopy of Chemical-Effects in Manganese 

Compounds, in Mathematics and Natural Science. 2016, Unversity of Cologne. 

56. Campbell, J.L. and T. Papp, WIDTHS OF THE ATOMIC K–N7 LEVELS. Atomic Data 

and Nuclear Data Tables, 2001. 77(1): p. 1-56. 

57. Glatzel, P., et al., Influence of the core hole on K beta emission following photoionization 

or orbital electron capture: A comparison using MnO and (Fe2O3)-Fe-55. Physical 

Review B, 2001. 64(4): p. 045109. 

58. Ghiasi, M., et al., Charge-transfer effect in hard x-ray $1s$ and $2p$ photoemission 

spectra: LDA + DMFT and cluster-model analysis. Physical Review B, 2019. 100(7): p. 

075146. 

59. Moskvin, A.S., DFT, L(S)DA, LDA+U, LDA+DMFT, …, whether we do approach to a 

proper description of optical response for strongly correlated systems? Optics and 

Spectroscopy, 2016. 121(4): p. 467-477. 

60. Su, S.-Q., et al., Quenching and Restoration of Orbital Angular Momentum through a 

Dynamic Bond in a Cobalt(II) Complex. Journal of the American Chemical Society, 

2020. 142(26): p. 11434-11441. 

61. Maganas, D., S. DeBeer, and F. Neese, A Restricted Open Configuration Interaction with 

Singles Method To Calculate Valence-to-Core Resonant X-ray Emission Spectra: A Case 

Study. Inorganic Chemistry, 2017. 56(19): p. 11819-11836. 

62. Adachi, H., Theoretical analysis of X-ray and electron spectra by DV-Xα method, in 

Advances in Quantum Chemistry. 2000, Academic Press. p. 1-29. 

63. Nyholm, R., et al., Auger and Coster-Kronig broadening effects in the 2p and 3p 

photoelectron spectra from the metals 22Ti-30Zn. Journal of Physics F: Metal Physics, 

1981. 11(8): p. 1727. 

64. Bagus, P.S., et al., Analysis of the Fe 2p XPS for hematite α Fe2O3: Consequences of 

covalent bonding and orbital splittings on multiplet splittings. The Journal of Chemical 

Physics, 2020. 152(1): p. 014704. 

65. Pessa, V.M., Multiplet splitting of manganese core p-levels in MnF2. Journal of Physics 

C: Solid State Physics, 1975. 8(11): p. 1769. 

66. Bagus, P.S., et al., Combined multiplet theory and experiment for the Fe 2p and 3p XPS 

of FeO and Fe2O3. The Journal of Chemical Physics, 2021. 154(9): p. 094709. 

67. Malherbe, J., et al., Evaluation of Hexavalent Chromium Extraction Method EPA Method 

3060A for Soils Using XANES Spectroscopy. Environmental Science & Technology, 

2011. 45(24): p. 10492-10500. 

68. Unceta, N., et al., Chromium speciation in solid matrices and regulation: a review. 

Analytical and Bioanalytical Chemistry, 2010. 397(3): p. 1097-1111. 

69. Armin Meisel, G.L., Rudiger Zsargan, X-ray Spectra and Chemical Binding (Springer 

Series in Chemical Physics). 1st ed. Spring Series in Chemical Physics. Vol. 37. 1989: 

Springer. 

70. Choudhury, D., et al., Anomalous charge and negative-charge-transfer insulating state in 

cuprate chain compound KCuO2. Physical Review B, 2015. 92(20): p. 201108. 



 

108 
 

71. Bagus, P.S., C.R. Brundle, and E.S. Ilton, A rigorous non-empirical theoretical analysis 

of the 2p XPS of NiO: Is it necessary to invoke nonlocal screening? Journal of 

Electroanalytical Chemistry, 2020. 875: p. 114135. 

72. Kaduk, B., T. Kowalczyk, and T. Van Voorhis, Constrained Density Functional Theory. 

Chemical Reviews, 2012. 112(1): p. 321-370. 

73. Ratcliff, L.E., et al., Toward Fast and Accurate Evaluation of Charge On-Site Energies 

and Transfer Integrals in Supramolecular Architectures Using Linear Constrained 

Density Functional Theory (CDFT)-Based Methods. Journal of Chemical Theory and 

Computation, 2015. 11(5): p. 2077-2086. 

 

4.6 Supplemental Information 

Note that the full, unedited supplemental information can be found with the published 

work. Sections of the supplemental information that are already addressed in earlier chapters 

have been removed for clarity and to avoid redundancy. 

 

4.6.1 Quanty and FPLO Input Files 

 The input required for running the CrCl2 Kα XES example can be found at 

https://github.com/Seidler-Lab/CrCl2KaXES_Example. This contains three input files that when 

combined create the entire pipeline for the calculation of CrCl2. All of these are modified from 

tutorials taken from the Quanty website [1]. The pipeline demonstrated here is characteristic of 

how the calculation was performed for all other materials unless otherwise mentioned. 

 

4.6.2 Green’s Function Formalism 

The formalism motivated here can be readily used to test the relevance of multiple 

intermediate states. Eq. 1 in the manuscript is often expressed in terms of an effective one 

https://github.com/Seidler-Lab/CrCl2KaXES_Example
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particle Green’s functions [2], and we will do so here as well. The two-step approach relies on 

the use of a third order Green’s function, 

 

 

where for Kα XES the 𝑠̂ annihilation operator acting on the 1𝑠 state (initial → intermediate) and 

𝑇𝑠𝑝 is the dipole transition operator between the 2𝑝 and 1𝑠 states (intermediate → final). We do 

not include the 𝜖 ⋅ 𝑟 term with the understanding that all polarization directions must be 

considered for an isotropic spectrum. In SII Eq. 1, 𝐻1 and 𝐻2 correspond to the Hamiltonians of 

the systems with a 1𝑠 core-hole and 2𝑝 core-hole respectively, with 𝑖 being the set of ground 

state wavefunctions which come from solving the eigenstates of the initial state Hamiltonian. 

The response function has arguments 𝜔1 and 𝜔2 which are defined the same way that they are in 

Eq. 1, corresponding to incident energy and emission energy, respectively. Making the same 

approximation that was made when going from Eq. 1 to Eq. 2, SII Eq 1. can be rewritten using a 

one-step approach with a first order Green’s function, 

 

 

where now the 𝑖′ states describe the intermediate ground state in the presence of the 1s core-hole.  
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4.6.3 Voigt Fits 

 



 

111 
 

 



 

112 
 

 

Figure SI-IV 1: Skewed Voigt fits comprised of 2, 3, or 4 individual peaks for both calculated 

and experimental spectra. The number of individual functions used for a particular material were 

the same for calculated and experiment. The diff/total parameter relates to the integrated absolute 

difference divided by the total area under the curve and gives some measure of how “good” the 

Voigt fit is. 

 

4.6.4 FWHM Calculation and Broadening Schemes 

  

 

Figure SI-V 1: Depiction of how the FWHM values were calculated for the Kα1 and Kα2 peaks. 

The experimental spectrum is shown on the top (a, b, c) and the theoretical spectrum is shown on 

the bottom (d, e, f). The horizontal lines demonstrate how the full width at half maximum is 

reported for the Kα1 (orange) and Kα2 (blue) peaks. The center column (b and e) shows a 
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zoomed in view of the Kα2 peak and the right column (c and f) shows a zoomed in view of the 

Kα1 peak. The FWHM is calculated via linear interpolation between data points, which provides 

a more accurate measure of the true FWHM for spectra with fewer data points. 

 

 

 

Figure SI-V 3: Modified theoretical and experimental Kα for (a) MnO and (b) Cr2O3. The 

theoretical spectra have been modified by changing the lifetime broadening values for better 

overall agreement between theory and experiment. To original lifetime broadening values can be 

found in Table 1. 
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Figure SI-V 4: A zoomed in comparison of the theory and experiment for MnO (a, b) and Cr2O3 

(c, d) with normal (a, c) and modified (b, d) broadening. The plots with modified broadening 

show that the larger lifetime broadenings on the Kα1 high binding energy side diverge from the 

experimental line shape for both compounds. 

 

4.6.5 Details of the DFT and Wannier Calculations 

  The LDA calculation was performed using the FPLO software. FPLO uses an atomic like 

basis, with fixed radial wave functions as described in references [3, 4]. These radial 

wavefunctions were used for calculating the Slater-Condon parameters following the standard 

formulas for the F and G terms [5]. The DFT parameters used for most materials were a 

20x20x20 Monkhorst-Pack k-mesh and a density convergence parameter of 10-10 Å-3. All 
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materials were carefully checked for convergence before moving on to the Wannier downfolding. 

More information about the default values used within FPLO can be found in the user manual 

[6]. The Perdue Wang 92 functional was used to perform the LDA calculation [7], and no spin 

was included in the DFT step. Given that the goal of this work is to reproduce local effects on 

deep core orbitals, within the DFT step all systems were treated as paramagnetic with no 

magnetic coupling between sites. All spin state effects are a result of terms included in the MLFT 

step. The experimental unit cells for all materials were taken from the crystallographic open 

database [8, 9]. 
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Figure SI-VI 1: Comparison of the band-structure and Wannier bands for NiO (a), MnF2 (b), 

CrCl2 (c), MnO (d), Cr2O3 (e), Mn2O3 (f), PbCrO4 (g), and MnO2 (h). Within each subplot, 

(left) the band structure is shown in thin gray lines and the Wannier bands are shown in thick 

colored lines for the TM 3d (red) and Ligand 2p (blue). In most cases only a single line is 

visible, indicating that the two band-structures are fully overlapping. (Right) the projected 

density of states for the Wannier orbitals.  

 

  The result of the Wannier down projection is shown in Figure SI-VI 1, where the Wannier 

bands are plotted over the band structure of each material. The Tight Binding Hamiltonian (𝐻𝑇𝐵) 

that is created from Wannier downfolded orbitals is block tri-diagonalized. The inclusion of only 

a single ligand block was sufficient to converge all compounds, resulting in a 20x20 single 

particle 𝐻𝑇𝐵 made up of 10 transition metal 3d states and 10 ligand d states. We emphasize here 
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that while the ligands do indeed have 2p valence shells, the 10 ligand d states come from a linear 

combination of all the 2p orbitals in the cluster (6 × 6 = 36 for octahedral and 6 × 4 = 24 for 

tetrahedral). The ligand orbitals in 𝐻𝑇𝐵 are formed from symmetry considerations so that they all 

have the same rotational properties as the transitional metal d states. We note that for systems 

that are less oxidized, such as NiO and MnO, the 𝑉𝑒𝑔 and 𝑉𝑡2𝑔 coupling terms are smaller than 

the various lower symmetry coupling terms for more highly oxidized systems such as PbCrO4 

and MnO2. This is expected, as the coupling terms tend to increase for more covalent systems, 

indicating that the higher oxidation states result in a greater sharing of electrons between the 

transition metal and ligands. There does not exist a review of hoping/hybridization and crystal 

field terms for a range of compounds, but for well-studied high symmetry systems such as NiO 

and MnO, our 10Dq,  𝑉𝑒𝑔, and 𝑉𝑡2𝑔 parameters agree well with literature [10, 11]. 
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Chapter 5  Prediction and Measurement of Resonant and 

Nonresonant Shake Effects in the Core-level X-ray Emission Spectra 

of 𝟑𝒅𝟎 Transition Metal Compounds    
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Shake effects, resulting from sudden core potential changes during photoexcitation, are well 

known in x-ray photoelectron spectroscopy (XPS) and often produce satellite peaks due to many-

body excitations. It has been thought, however, that they are negligible in core-to-core x-ray 

emission spectroscopy (CTC-XES), where the difference in core-hole potentials upon radiative 

decay are rather small. We demonstrate that shake effects are significant in Kα XES from 3d 

transition metal systems with nominally zero valence electrons. We show that valence level shake 

satellites are amplified via interference due to a resonance between the 2p3/2-hole (Kα1) plus 

valence level shake state, and the 2p1/2-hole (Kα2) state. Additionally, while the Kα2 shake 

satellite is indeed predicted to be weak, we observe it experimentally, providing further 

independent verification of our model. The prediction includes a detailed analysis of 2p to 1s Kα 

XES using density functional theory (DFT)-augmented multiplet ligand field theory (MLFT). 
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In x-ray spectroscopy, the creation of a core-hole can cause various secondary excitations 

due to the sudden change in potential. These co-called shake effects have strong contributions to 

experimental spectra, producing satellites that can carry important information about 

configuration interactions 1-3, ligand environment 4-5 and magnetic state 6-8. For example, shake 

effects must be included in calculations for 3d transition metal or 4f lanthanide and 5f actinide 

systems to accurately describe back-donation and charge-transfer processes 9-10. It is precisely the 

strongly correlated behavior of these systems which makes them useful both in the context of 

application 11-15 and as testbeds for advancing theoretical models which seek to capture important 

many-body physics 10, 16-18. 

Shake effects are observed most strongly in x-ray photoelectron spectroscopy (XPS) 9, 19 

where collective excitations accrue because the change in core-hole potential leaves the outer 

shell electrons in a state that is no longer an eigenstate of the system, i.e., the spectroscopy is 

comparing an initial state with no core-hole to a final state with a core-hole. Similar effects can 

occur in x-ray absorption spectroscopy (XAS) 20, resonant inelastic x-ray scattering (RIXS) 21, 

and valence-to-core (VTC)-XES 22, but shake effects in core-to-core (CTC)-XES are relatively 

unexplored. As discussed by in Martin, et al., 23 the shake-up satellites in CTC-XES are expected 

to be weak, as the process involves a neutral transition of one core-hole to another (e.g. 1s core-

hole to 2p core-hole in Kα XES), causing only a small change in the potential felt by the valence 

electrons. This is in contrast to XPS, where the transition leaves the absorbing atom ionized. The 

difference is especially prominent in 3d transition metal complexes, where shake satellites in 

XPS are substantial, while CTC-XES spectra are dominated by either spin-orbit splitting 24 or 

spin dependent atomic multiplet effects 25. 
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However, here we report a shake-up effect which appears when the splitting of the XES 

final state core-hole levels is resonant with a valence level excitation, resulting in a strong 

magnification of the shake-up satellite. Similar resonant shake processes have been observed in 

XPS and help explain the dual broadening of the 2p1/2-hole final state 26. The origin of this 

resonant shake effect is similar in scope to the well-known L2L3M45 Coster-Kronig effect 27 

where the lifetime of the 2p1/2-hole state is made significantly shorter than the corresponding 

2p3/2-hole lifetime due to additional decay channels for the 2p3/2-hole final state 28.  

In this Letter we present a combined theoretical and experimental study of shake 

excitations in CTC-XES and demonstrate the conditions under which they become important for 

3d transition metal systems. We calculate the Kα XES using a first principles DFT + MLFT 

formalism 29-30 and validate against experimental results to show both the resonant shake-up 

effect and also the much weaker shake-up effect without resonant enhancement.     

Our MLFT cluster model is built from crystal field and charge transfer perturbations to the 

atomic Hamiltonian 10. The full Hamiltonian 𝐻 in Eq. 1 is a combination of single particle (𝐻𝑆𝑃 in 

Eq. 2) and many-body (𝐻𝐶 in Eq. 3) terms    

𝐻 = 𝐻𝑆𝑃 + 𝐻𝐶    (1) 

𝐻𝑆𝑃 = 𝜖1/2𝑛1/2 + 𝜖3/2𝑛3/2 + ∑ 𝜖𝑏𝑛𝑏𝑏 + ∑ 𝜖𝑎𝑛𝑎𝑎    (2) 

𝐻𝐶 = ∑ 𝑈𝑣1𝑐1𝑣2𝑐2
𝑎̂𝑣1

† 𝑎̂𝑐1

† 𝑎̂𝑣2
𝑎̂𝑐2𝑣1𝑣2𝑐1𝑐2

 (3)  

where 𝜖 is the single particle energy and 𝑛 is the occupation of the level, 1/2 and 3/2 refer to 

the 2𝑝1/2 and 2𝑝3/2 levels, and 𝑏 and 𝑎 correspond to the bonding and antibonding levels. 𝐻𝐶 

gives a particle conserving Coulomb interaction which couples the core (𝑐) and metal centered 



 

123 
 

valence levels (𝑣), causing the spin-orbit split core orbitals to become mixed 31-32. 𝐻𝑆𝑃 defines a 

single particle basis that is useful for discussing the valence level excitations, while 𝐻𝐶 provides 

the many-body intra-atomic coupling. In the final state, the 2p core levels have 5 electrons total, 

where the character of the final state is determined by which spin-orbit split level the hole resides 

in. For 3d transition metal systems the valence levels are broken into 10 d orbitals and 10 ligand 

orbitals, which have total occupations of 𝑛𝑑 and 10 respectively. The choice of using a 10 orbital 

ligand shell comes from the orthogonalized representation of the ligand orbitals in regular MLFT 

cluster approaches 29. 

 

Figure 1: Valence (top) and core (middle) configurations of the relevant final states in Kα XES 

of a 𝑑0 system, along with the corresponding emission lines (bottom) shown as sticks. Each 

column shows a different final state electron configuration. For reference, the spectrum of the 𝑑0 

material PbCrO4 is also shown (bottom). 
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The focus on 𝑑0 systems is twofold. First, they are the most highly oxidized (ex: Cr(VI) 

from PbCrO4) state for a metal, which results in a more covalent bonding scheme, giving a large 

splitting between the bonding and antibonding levels 10, 23. Second, the energy distribution of the 

states after a charge transfer shake excitation (effectively a 𝑑1 system) is much narrower than for 

a system that starts with more 𝑑 electrons. As we will see later, having a relatively tight, 

localized shake satellite at the right energy is what will allow the corresponding final states to 

meaningfully impact the spectrum. 

 Figure 1 shows diagrams (top, middle) representing the various final states involved in 

this resonance for a 𝑑0 system such as PbCrO4, as well as the corresponding emission lines 

(bottom, sticks). The pure 2p3/2-hole and 2p1/2-hole states are given by the first and second 

columns of Figure 1 where no valence level (shake-up) excitation takes place. The third column 

shows a 2p1/2-hole plus charge transfer (CT) shake-up final state (denoted C2) with no final state 

resonances or interference. Finally, the fourth column shows a mixed 2p final state where a 

valence level shake excitation allows a 2p3/2-hole + CT (C1) final state to become degenerate in 

energy with the purely 2p1/2-hole final state. 

In general, the overlap between the valence component of the wavefunction for the 1s 

core-hole and 2p3/2-hole + CT states will be very weak 23. However, when the 2p core-hole state 

has a sufficient mix of 2p1/2-hole and 2p3/2-hole character then the weak 2p3/2-hole + CT final 

state becomes magnified by cross term which includes the large overlap between the purely 2p1/2 

core-hole state and 1s core-hole state, i.e.,  

|⟨α|𝑇̂|1𝑠̅̅ ̅⟩|
2

= 𝑎1
2|⟨2𝑝̅̅̅̅

1/2|𝑇̂|1𝑠̅̅ ̅⟩|
2

+ 2𝑎1𝑎2⟨2𝑝̅̅̅̅
1/2|𝑇̂|1𝑠̅̅ ̅⟩⟨𝐶1|𝑇̂|1𝑠̅̅ ̅⟩ + 𝑎2

2|⟨𝐶1|𝑇̂|1𝑠̅̅ ̅⟩|
2

       (4) 
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where |𝛼⟩ is a mixed 2p1/2-hole and C1 final state and 𝑎1 and 𝑎2 are coefficients determining the 

relative 2p1/2-hole and C1 character of the final state. In the third column of Figure 1 we see that 

this resonance phenomenon is missing from the purely 2p1/2-hole + CT (C2) final state because it 

also has weak overlap between the valence wavefunction and the 1s core-hole valence 

wavefunction, but no multiplicative factor to amplify it. 

To illustrate these effects and serve as a quantitative test of theory, we measured the K 

XES from the transition metals species in Cr metal, Cr2O3, PbCrO4, SrTiO3, KMnO4, V2O3, VO2, 

and V2O5. All samples were 97% or higher purity from commercial vendors. The KMnO4 

samples were prepared by sealing powder in thin-walled quartz capillary holders to limit air 

exposure 33. All other samples were prepared with a 1:1 mass mixture of paraffin wax and 

powder. 

XES of the V and Ti materials was measured with an easyXES150 spectrometer 

(easyXAFS LLC). For Mn and Cr materials, XES spectra was collected on a laboratory based 

spectrometer described in Jahrman, et al. 34 with a 100W x-ray source and Pd anode. For all 

compounds measurement times were chosen to get ~10,000 or more total counts at the peak of 

the Kα1 line. For the Cr compounds special care was taken to achieve excellent counting 

statistics with ~100,000 total counts at the peak of the Kα1 line. All samples were carefully 

monitored for beam damage over the course of the measurement time. We used 0.25 eV energy 

steps in the region of the spectral features and wider, 1-eV steps outside that range to define 

background levels. A narrow entrance slit (0.25 mm for the half-meter Rowland circle, 

easyXES150, and 1 mm for the 1-meter Rowland circle) was used to reduce source size 

broadening. 
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Our calculations use the DFT + MLFT cluster model approach detailed in Haverkort et 

al. 29, which has been demonstrated to perform well for 3d transition metal systems 35. The 

computational details are described elsewhere 30 and only summarized here. The DFT step is 

used to create a tight binding (TB) Hamiltonian 𝐻𝑇𝐵 which describes the local environment in 

the context of the crystal field split levels and charge transfer between a central metal ion and 

neighboring ligands 36. This is accomplished by a symmetry restricted Wannier projection onto 

the bands near the Fermi level which encodes information about the hybridization between the 

orbitals involved in bonding 18, 29. This approach successfully replaces many of the empirical 

parameters in traditional MLFT 18, 29-30, but DFT does not correctly reproduce the many-body 

Coulomb interactions which are necessary for an accurate approximation of charge transfer 

dynamics. To overcome this problem, two remaining free parameters 𝑈𝑑𝑑 and Δ are used to 

account for the average screened 𝑑-𝑑 Coulomb interaction and the energy difference between the 

𝑑𝑛𝐿 and 𝑑(𝑛+1)𝐿̅ states respectively. As in previous work, we approximate the Coulomb 

interaction between core and valence levels, 𝑈𝑝𝑑 and 𝑈𝑠𝑑, by assuming proportionality to 𝑈𝑑𝑑, 

which makes it feasible to fully explore the remaining parameter space 30. 

Reduced Slater-Condon parameters were also extracted from the DFT radial 

wavefunctions for 1s, 2p, and 3d orbitals, while spin-orbit couplings are taken from atomic 

calculations using Cowan’s code 37-39. All calculated spectra were Lorentzian broadened with 

core-hole lifetime values taken from Ref 40, and a 1.0 eV to 1.2 eV Gaussian broadening was 

applied to match experimental resolution. The experimental spectra were not all measured at the 

same instrument, the high binding energy side of the Kα1 was used to tune the Gaussian 

broadening to ensure a consistent broadening scheme. Additional details for this broadening 

procedure as well as parameters for the DFT step including functionals, k-point grids, and 
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convergence parameters can be found in the supporting information of Ref 30. All calculated 

spectra were checked for convergence with respect to the energy window of the Wannier 

projection, density, total energy, k-mesh and were fit according to a 0.5 eV grid search of 𝑈𝑑𝑑 

and Δ. Further details are briefly summarized in supporting information section SI-IV. 
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Figure 2: Spectra and final state character analysis for PbCrO4. (a) Broadened theory and 

experimental Kα XES spectra. Parameters for calculated spectra are reported in Table 1. (b) 

Calculated intensities and energies of individual transitions. The regimes labeled by C1 and C2 

are consistent with their earlier definitions. 2C1 refers to CT satellites of double valence electron 

excitations, and “mixture” simply means that the low energy regime below approximately -18 eV 

has contributions from multiple many-body final states. (c) and (d) Expectation of the number 

operators for the core and valence orbitals respectively for each of the final states. 

Moving to results, in Figure 2 we show the calculated spectra and orbital occupations for 

a choice of Δ = -8.0 eV which creates a valence level gap Δε  ~ 4.65 eV. Beginning with Figure 

2(a) which compares calculated and experimental spectra for PbCrO4 we see that the theory 

agrees quite well overall, with the high energy tail of the Cr Kα2 peak being qualitatively 

reproduced. The calculated spectrum is nearly perfect in the vicinity of the Kα1 and low binding 

energy side of the Kα2 as expected, but the C1 shake satellite is slightly too strong compared to 

experiment. This makes sense, as we are using a discrete number of valence states in our cluster 

model, limiting the number of possible final states with many-body shake excitations. A more 

accurate agreement could likely be achieved with DFT + DMFT or a similar technique which 

takes into account the continuous band nature of the valence states, thereby producing a broader 

satellite peak 41. 

From Figure 2(b) and 2(c) we see that final states that have at least a little 2p1/2-hole 

character (around ~7.5 eV below Kα1) have meaningful intensity contribution, which agrees with 

the resonance condition from Eq. 4. It is important to highlight that many of the mixed final 

states are weighted more heavily towards 2p3/2-hole character, which is a product of the ratio 

between the number of 2p3/2 states and 2p1/2 states, i.e. 4:2. This ratio can be modified by many-
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body interactions, but the 2p3/2 contribution to the spectrum is generally larger. In Figure 2(d) we 

note that the first final states roughly 5 eV below the main Kα1 peak have a roughly one electron 

shift in occupation between the bonding and antibonding orbitals, which is consistent with the 

single-particle final states in column 4 of Figure 1. The occupation of the final states as a 

function of Δ is shown in Figure S4 and we note that the trend in the valence level splitting and 

core orbital occupation is consistent with the single particle picture from Figure 1 where the 

states that have highly mixed 2p-hole character are those for which the 2p3/2-hole + CT and 2p1/2-

hole are nearly degenerate.  
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Figure 3: (a) Calculated spectra for PbCrO4 plotted with log intensity. The Kα2 satellite peak is 

roughly 7 eV below the main Kα2 line. (b) Experimental spectra for PbCrO4. (c) Experimental 

spectra for bulk Cr metal (3𝑑44𝑠2), Cr2O3 (3𝑑3), and PbCrO4 (3𝑑0). 

The MLFT results as shown in Figure 2 predict a very weak nonresonant Kα2 satellite 

peak corresponding to the C2 states in the region between 5396 eV and 5401 eV. We investigate 

this in Figure 3 and present what we believe is its first observation, giving additional independent 

evidence for our description of shake effects in CTC-XES. From the calculated PbCrO4 spectra 

in Figure 3(a) (note the logarithmic scale) we predict that the Kα2 satellite should have ~1% the 

intensity of the main Kα1 peak and will be ~7 eV below the main Kα2 peak (the same energy 

difference as for the Kα1 satellite). In Figure 3(b) we show a highly averaged experimental 

spectrum for the Kα XES of the PbCrO4 sample, and indeed we observe a weak but noticeable 

Kα2 satellite peak. In Figure 3(c) we return to a linear scale and show the PbCrO4 result together 

with spectra for Cr metal and Cr2O3, for which the equivalent shake satellites are suppressed as 

discussed earlier. There is a broad satellite feature below the Kα2 peak of the PbCrO4 spectra 

which is not present in the other two Cr materials. 

  Looking for other examples of these phenomenon in 𝑑0 compounds, the calculated and 

experimental spectra for the 𝑑0 KMnO4, V2O5, and SrTiO3 are presented in Figure 4, where we 

see good agreement. The MLFT parameters for the calculated spectra are presented in Table 1 

and the DFT derived TB Hamiltonians are presented in supporting information section SI-II. 
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Table 1: The Slater-Condon, spin-orbit splitting, charge transfer, broadening parameters, and 

minimum bonding-antibonding splitting Δε for all calculated materials. All values are reported in 

eV. 
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Figure 4: Comparison between experiment (orange) and theory (blue) for KMnO4, V2O5, and 

SrTiO3. All parameters for the calculated spectra are reported in Table 1.  

The spectra with the strongest resonance features are clearly PbCrO4 and KMnO4 which 

are also the two most highly oxidized of the 𝑑0 systems presented, and the two cases with the 

most negative Δ values. While negative charge transfer energies are rare, they have been 

previously identified 42 as a sign of strong covalence, which is supported by the large coupling 

between the 3d and ligand blocks. In the case of PbCrO4 there is a strong satellite on the high 

binding energy side of the Kα2 peak at roughly -7.5 eV below the Kα1 peak, leading to very 

pronounced asymmetry. For KMnO4 the resonance peak is also roughly at -7.0 eV, but the larger 

spin-orbit splitting leads to the two main peaks staying relatively symmetric and instead there is 

some filling of spectral intensity in the region between K1 and K2.  

For V2O5 we found that achieving best fit with experiment required scaling the coupling 

parameters between the 3d and Ligand blocks of the TB Hamiltonian, as we demonstrate in 

Figure S3. This puts the resonance peak just slightly higher in energy (at roughly -6.5 eV) 

compared to the main Kα2. Compared to previous semi-empirical calculations such as those by 

Bocquet et al. 9, our average unreduced coupling parameters agree well with the values they find. 

However, they do not account for crystal field effects, which are of order 0.8 eV, or configuration 

dependence in the coupling, which is on the order of 1.4 eV, implying that the local environment 

around the V is not well approximated by the Oh point group that they assume. Further details are 

given in the supporting information section SI-I. 

Finally, SrTiO3 was the only material that did not require a negative or small Δ when 

fitting to experiment. While the line shape of the Kα2 is in slight disagreement with experiment, 
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with an overestimated asymmetry, the width of the peak is in good agreement with experiment. 

This supports conclusions from earlier studies by Bagus et al 26 which demonstrate that a similar 

coupling to shake phenomenon produce mixed 2p1/2-hole + C1 states in the XPS of SrTiO3, 

explaining the anomalously large broadening within the Kα2 peak. The resonance peak is at 

roughly -6 eV, nearly exactly on top of the Kα2 peak. This comes from a combination of the fact 

that SrTiO3 has the strongest 3d-Ligand coupling of the materials studied in this work, consistent 

with a positive Δ. Our values for 3d-Ligand coupling, 𝑈𝑑𝑑 and Δ similarly agree well with 

previous work by Bocquet et al. 9, where in this case the point group of the first shell around the 

Ti is perfectly Oh. 

 In summary, we have demonstrated how a coincidence of energy splitting between deep 

core spin-orbit split orbitals and valence level bonding-antibonding orbitals results in strong 

shake satellites underneath the Kα2 peak. The resonant shake effects manifest as broad satellites 

near the main Kα2 peak and appear as an asymmetry in its line shape. They are strongest for 

highly oxidized systems, showing that the line shape of the K2 peak is often closely connected 

to metal ionicity or metal-ligand covalency. In particular, the position of the resonance satellite is 

influenced by the coupling between the metal valence and ligand orbitals. Our picture of the 

resonant shake effect is further supported by the prediction and first observation of a nonresonant 

shake satellite at the corresponding energy below the K2 peak in PbCrO4. 

 Future work is needed to achieve a better understanding the characteristics of the valence 

level excitation in these 𝑑0 materials and a search for similar core-valence energy difference 

coincidences in other systems beyond the 3d row. From techniques such as RIXS, shake-up 

satellites have been used to study similar charge transfer excitations between bonding and 

antibonding orbitals, which allows for detailed study of the symmetry of the various orbitals 
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involved in bonding 43. Similar studies applied to 𝑑0 systems would be a next step in exploring 

the properties of these resonant shake features, especially when comparing 𝑑0 systems with 

different local symmetries (ex: SrTiO3 with Oh and PbCrO4 with Td). 

 Finally, other techniques like High Energy Resolution Fluorescence Detection (HERFD) 

have been used to measure x-ray absorption spectrums through the emission from decays into 

deep core levels 44. By using a judicious choice of a cut through the RIXS plane, this technique 

can provide an XAS spectrum which is only dependent on the final state core-hole lifetime. This 

is often much longer and leads to less lifetime broadening and a sharper XAS spectrum. The 

specific energy range of emission spectrum that should be used to perform the HERFD 

measurement is not always obvious, and it is possible that a study of Kα detected HERFD which 

uses different parts of the Kα spectrum to perform the same measurement may produce spectra 

with different broadenings, in accordance with the lifetimes of the final states being probed. 
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Figure S1: Experimental Kα XES for (left) V2O3, (middle) VO2, and (right) V2O5. 

In Figure S1 we present the experimental Kα spectra for a series of vanadium compound 

going from 𝑑2 to 𝑑0, where we have taken the ratio of the right and left halfwidth at half max 

(HWHM) of the Kα2 peak as a rough method of quantifying the peak asymmetry. The Kα2 R/L 

ratio grows monotonically as the vanadium becomes more oxidized, which corresponds to the 

shake satellites from the Kα1 peak becoming stronger as the 2p3/2-hole + CT final state energy 

gets closer to the purely 2p1/2-hole finale state. This trend is in agreement with previous work for 

Ti by Kawai et al. 1 and demonstrates how the turn on of the resonance feature can be modulated 

as a function of oxidation state. 
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Figure S2: The Kα2 peak of calculated spectra for V2O5 as a function of Δ, with a constant 𝑈𝑑𝑑 

of 2.0 eV. (left) The calculated spectra using the ab-initio TB Hamiltonian which is produced 

from DFT. (right) The same calculated spectra but with the coupling parameters between the 3d 

and Ligand blocks scaled to 70% of their ab-initio values. The dashed lines in both subplots are 

the experimental spectra for V2O5. 

The 3d - Ligand coupling is normally taken ab-initio from the TB Hamiltonian 

constructed via a down projection of Wannier states onto the metal 3d and Ligand 2p states. The 

ad-hoc modification to the TB Hamiltonian required to get good agreement with experiment 

implies that the LDA step overestimates the valence hybridization coupling for V2O5, which has 

been known to be notoriously difficult properly simulate due to its highly correlated nature 2. We 

have tried a GGA functional and the inclusion of different orbitals (V 4s and V 4p) in the down 
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projections step, but we have not observed any change in coupling that would explain the 

roughly 70% reduction required to achieve best fit with experiment. Future work should explore 

the potential origin of this reduction. Specifically, we expect that a more realistic description of 

the valence orbitals may be required, either by moving beyond discrete orbital representations 

with DMFT 3, or by using a higher level post Hartree-Fock methods to better capture the many-

body dynamics in the valence orbitals 4. 

 

II. DFT TB Hamiltonians 

 

The tight binding Hamiltonians (𝐻𝑇𝐵) for KMnO4, PbCrO4, V2O5, and SrTiO3 are shown in 

Figure S3. The number of crystal field and charge transfer parameters are symmetry constrained 

by the local environment around each transition metal ion. This can be seen most clearly when 

comparing the number of non-zero terms in the 𝐻𝑇𝐵 from SrTiO3 with perfect Oh local symmetry 

and V2O5, with Cs local symmetry. The DFT calculation does not include spin, and all spin 

effects come from terms added to 𝐻𝑇𝐵 during the MLFT portion of the calculation, as described 

in Ref 5. 
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Figure S3: DFT derived tight binding Hamiltonians for KMnO4, PbCrO4, V2O5, and SrTiO3. For 

each compound the 3d block is shown in red, the ligand d block is shown in blue, and the 

coupling terms between them are shown in pink. 

III. Final State Occupations 
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Figure S4: Final state character analysis of PbCrO4. The top row shows broadened spectra 

calculated with 𝑈𝑑𝑑 = 2.0 eV, Δ = -4.0, 2.0, and 8.0 eV, and a constant Lorentzian broadening of 

2.0 eV FWHM. The middle and bottom rows are the expectation of the number operators for the 

core and valence level respectively. 

 

The condition of maximal mixing of the final state character is reached near Δ = 2.0, 

where the final states in the vicinity of the Kα2 are all strongly mixed in 2p-hole character and 

the bonding-antibonding splitting matches the ~9.0 eV spin-orbit splitting. For Δ = -4.0 and 2.0, 

the first final states lower in energy than the main Kα1 peak have a transition of roughly 1 

electron from the bonding to antibonding orbitals. This is consistent with the mixed single-

particle final state picture described in column 4 of Figure 1 and makes it clear that the satellite 

spectra features are dominated by charge transfer effects. We note that for all 𝑑0 materials 



 

144 
 

studied the shake features are entirely dependent on the presence of the ligand coupling. In fact, 

without ligand coupling, traditional MFLT approach produces a simple two-peak spectra that is 

devoid of multiplet effects, because the oxidized metal d shell has no way to recover the 

electrons it has lost in bonding. We also note that while the single-particle derived bonding and 

anti-bonding orbitals (bottom row of Figure S4) are not perfect eigenstates of the full many-body 

Hamiltonian which includes d-d Coulomb interactions, the trend of the occupations still agrees 

with what we expect from model in Figure 1 of the main text, with the 2p3/2-hole + CT final 

states having a corresponding transfer of electron occupation from bonding to anti-bonding 

orbitals. 

IV. Multiplicity Analysis 

In some cases, there is a connection between the multiplicity of the overall system in the final 

state and the satellite features which are observed. This is strongly observed in Kβ XES, where 

the Kβ’ shoulder is directly tied to multiplet effects from the Coulomb exchange splitting 

between the 3p and 3d levels 6. The effect is often used to directly infer the high-spin or low-spin 

character of the valence orbital 7. The approximate values we list here are for 3d transition 

metals. The spin-orbit splitting of the 3p levels and 3d levels are small, approximately 1 eV and 

0.05 eV respectively, and the final states can be interpreted in terms of the singlet, doublet, 

triplet, etc … multiplicities, as has been done in Guo et al. 8. Comparatively, the Coulomb 

exchange (G Slater-Condon terms) between the 3p and 3d levels is much larger (on the order of 

15 eV) and therefore a distinct splitting in the final state energies is observed when the unpaired 

3p spin is aligned (ex: triplet) or opposed (ex: singlet) with the 3d spins 7, 9. This is shown 

explicitly in the thesis of Pieter Glatzel in figures 16 and 17 6. It should be noted that the 3p to 1s 
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transition is dipole mediated, which means that the multiplicity of the state is conserved, and the 

final states have the same multiplicity as the intermediate state that they originate from. 

 In Kα XES however, the 2p core level spin-orbit splitting is much stronger (on the order 

of 10 eV) and the exchange between the 2p and 3d levels is about 5x weaker (approximately 3 

eV). This means that Kα spectra is instead dominated by the 2p spin-orbit splitting while the 

individual L3 and L2 peak shapes are the product of multiplet effects. This distinction between the 

role of spin in the Kα and Kβ emission lines is highlighted by an example Cu(2+) system in an 

Oh local environment shown in Figure S6. The spectra originate from triplet and singlet 

intermediate states shown in S6 e) and S6 f). In S6 b) we see that the Kβ’ peak has a strong ‘spin 

anti-aligned’ character, which comes from the higher energy final state (and thus lower energy of 

emission) when the unpaired core electron is the opposite spin of the unpaired valence electron. 

This comes directly from the Coulomb exchange 10. 
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Figure S6: Subplots (a, b) show the calculated Kβ XES for a Cu(2+) system, nd = 9. Subplot (a) 

shows the broadened (black) and unbroadened (red) calculated from summing over all ground 

states in the presence of the 1s core-hole. Subplots (c, d) show the corresponding Kα XES from 

the same system. Subplots (e, f) show the triplet and singlet states respectively. Notably, the Kβ’ 

satellite near -23 eV in subplot (b) comes from the singlet ground state due to the Coulomb 

exchange between the 3p and 3d orbitals. This calculation is only meant to highlight the behavior 
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of the emission with regards to the spin of the intermediate state and not to be directly compared 

with experiment. 

 

 It is worth considering if the charge-transfer satellites that we observe in 𝑑0 systems are 

spin-mediated in a similar fashion. However, the nature of the full bonding orbital and empty 

anti-bonding orbital immediately leads us to see that all the valence electrons are trivially spin-

paired, at least in the lowest energy intermediate state. The 1s ionized intermediate state is a 

doublet, and even though quartet and higher multiplicities are accessible (due to the sudden 

approximation from the creation of the core-hole 11) they do not contribute meaningfully to the 

intensity of our spectra. For more information, please see the discussion comparing the “one-

step” and “two-step” methods for calculating XES in our previous work 5. At least in the discrete 

orbital approach implemented within MLFT which has 10 d fermionic modes and 10 Ligand 

fermionic modes, this behavior a general property of all 𝑑0 systems, and the shake satellites are 

entirely dominated by the charge transfer mechanism between the 3d and Ligand orbitals. 
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Figure S7: The calculated Kα XES of Cr in PbCrO4 using the spin-up and spin-down 

intermediate states. The two spectra are identical and have the same multiplicity. 
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Chapter 6  X-ray Emission Spectropolarimetry of Single Crystal Cu 

and Ni systems    

 

Originally submitted as: Jared E. Abramson1, Charles A. Cardot1, Josh J. Kas1, John J. Rehr1, 

Werner Kaminsky2, Herwig Michor3, Petra Becker4, Gerald T. Seidler1,∗ (2025). X-ray 

Emission Spectropolarimetry of Single Crystal Cu and Ni Systems.  

https://doi.org/10.48550/arXiv.2507.18839. J. Abramson and C. Cardot jointly wrote and 

conducted the majority of this work. 

 

Polarization dependence has historically seen extensive use in x-ray spectroscopy to 

determine magnetic and local geometric properties, but more broadly as a way to gain 

extra sensitivity to the electronic structure at the level of individual magnetic orbitals. 

This is often done in the context of x-ray absorption through techniques like x-ray 

magnetic circular dichroism or x-ray linear dichroism, but it has seen little application 

to x-ray emission. Here we explore the information contained in the polarized emission 

of two 3d transition metal systems across both core-to-core and valence-to-core emission 

lines. We demonstrate how the Rowland circle geometry can be used as a 

sepctropolarimeter, and apply it to the XES of LiVCuO4 and DyNiC2. From this we 

explore how the polarized XES provides a reflection of the occupied density of states at 

the valence level, either as a second order effect through Coulomb exchange (CtC-XES) 

or by direct transitions (VtC-XES). Finally, we highlight how the individually polarized 

dipole emission spectra can be extracted from an orthogonal suite of directed emission 

https://doi.org/10.48550/arXiv.2507.18839
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spectra, allowing for polarized measurements at high Bragg angle with lower 

experimental broadening. 

6.1 Introduction 

Many functional materials, such as superconducting cuprates, layered perovskites, and quasi-1D 

materials, exhibit anisotropic electronic and chemical environments [1–3]. This makes them ideal 

candidates for polarization-sensitive x-ray techniques, which exploit dipole selection rules to 

resolve direction-dependent electronic features [4]. Polarized XAS, in particular, has become a 

standard technique in studying the magnetic, orbital, and local electronic anisotropy. It is the 

backbone to many polarized spectroscopy techniques such as x-ray magnetic circular dichroism 

(XMCD) [5, 6], x-ray magnetic linear dichroism (XMLD) [7], angle-resolved photoemission 

spectroscopy (ARPES) [8–12], and resonant inelastic x-ray scattering (RIXS) [13–17]. 

X-ray emission spectroscopy (XES) is a versatile, element-specific probe that is well suited 

to a wide range of sample environments, including liquids, powders, single crystals, and even 

under in situ or operando conditions. The technique is ideal for characterizing the occupied density 

of states, providing insight into valence-level electronic structure, oxidation states, covalency, and 

chemical bonding [18, 19]. Because XES exclusively probes occupied orbitals, it can be paired 

with x-ray absorption spectroscopy (XAS), which probes unoccupied orbitals, to create a powerful 

complementary framework for understanding electronic and chemical structure [20–22]. 

In contrast, polarized non-resonant XES has seen little study due to the difficulty involved in 

measuring the polarization of a photon from low brilliance sources, i.e. fluorescence. Studies by 

Drager¨ and Czolbe [23, 24] showed there were polarization effects in XES which reflected the m-

resolved density of states, but these developments were hampered due to optical constraints and 
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detector efficiency. Later, Bergmann and co-workers [25] demonstrated how electronic anisotropy 

from different ligand species can produce a polarization dependence in the ligand-coupled Kβ′′ 

peak of Mn VtC-XES from [Rh(en)3][Mn(N)(CN)5]·H2O single crystals. 

To further investigate the application of polarized XES, we present two case studies on 

single crystal systems, LiVCuO4 and DyNiC2. LiVCuO4 is a low-dimensional cuprate with strong 

orbital ordering from crystal field effects [26, 27] and DyNiC2 is an electronically quasi-one-

dimensional rare-earth inter-metallic carbide [28, 29]. Similar to other rare-earth nickel carbides 

such as SmNiC2, the quasi one-dimensionality of DyNiC2 arises from its Ni chain structures, which 

drive anisotropic electronic behavior along the chain direction [30]. We directly measure polarized 

XES using a spectropolarimeter design similar to the one developed by Drager¨ et al. [31] but with 

improved energy resolution, and indirectly by a new technique to extract the polarized spectra 

from a set of linearly independent, unpolarized XES spectra. We employ multiplet and real space 

Green’s function calculations to help interpret the electronic structure information from polarized 

CtC- and VtC-XES techniques. From the lineshape and energy shifts of the polarized x-ray 

emission, we can infer the occupational configuration of the valence electrons to a similar extent 

as can be achieved with x-ray linear dichroism (XLD) or ARPES studies [32–35]. 

6.1.1 Manuscript Overview 

The manuscript proceeds as follows. Section 2 describes the relevant terminology, a framework of 

XES and corresponding toy model, and the single crystal systems we study. In Section 3 we 

describe the experimental and computational methods. Special attention will be paid to the 

experimental setup and data processing to confirm that we perform a comparison of different 

polarizations on a consistent energy scale. In Section 4 we present a polarization analysis of the 
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CtC Kβ XES and VtC-XES for both materials. Finally, in Section 5 we summarize our results and 

conclude. 

6.2 Background 

6.2.1 X-ray Emission Spectroscopy 

X-ray emission is the fine energy resolution study of the fluorescence given off when an atom 

radiatively decays to fill a core hole left behind from an absorption event [18]. Core-to-core (CtC) 

Kβ XES involves filling a 1s core hole from the 3p orbital. CtC Kβ XES has two main spectral 

features: Kβ1,3 and Kβ’. The Kβ1,3 is defined by transitions from the spin-orbit split 3p1/2 or 3p3/2 

orbitals filling the 1s hole. The Kβ′ satellite line originates from the exchange interaction between 

the 3p core hole and unpaired 3d electrons in the valence shell. The strength of the satellite is 

strongly dependent on the 3d spin state, growing for higher spin systems [18]. 

When the transition is from the valence levels, which have a mix of 3d and ligand character, 

to 1s core hole the process is known as a valence-to-core (VtC) transition. 3d TMs VtC-XES also 

has two main spectral features; a main Kβ2,5 spectral region coming from molecular orbitals with 

metal 3d, metal 4p, metal 4s, and ligand 2p character, and a Kβ′′ satellite from ligand 2s electrons 

filling the metal 1s hole. As such VtC-XES is highly depend on local environment with the Kβ2,5 

peak changing due to bonding and 3d electron configuration and the Kβ′′ peak energy and intensity 

being dependent on ligand speciation and bond length [36]. 
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6.2.2 Polarization Dependence 

Terminology 

Here we introduce and define the terminology for directed and polarized spectra. Spectra measured 

at high Bragg angle will contain approximately equal contributions from in-plane (p) and out-of-

plane (s) polarizations, and are referred to as unpolarized. Spectra measured at low Bragg angle 

will be dominated by the out-of-plane polarization, and we call these partially polarized. Further 

details will be provided in Section 3.1. 

A key note is that both of these are considered directed spectra, where the specified axis 

refers to the direction of photon propagation, denoted as Ix, Iy, or Iz. However, the partially 

polarized spectra are dominated by a specific polarization component that is perpendicular to the 

propagation direction, and are therefore denoted with both the polarization axis and propagation 

axis specified (ex: σx, Iz). In contrast, polarized spectra refer to emission resulting from a dipole 

transition along a specific axis, denoted purely as σx, σy, or σz. All polarized spectra presented in 

this work are either extracted from experiment following Section 3.4.3 or directly calculated from 

theory. The terminology is summarized in Table 1. 

Term Definition 

Unpolarized High Bragg Angle 

Partially Polarized Low Bragg Angle 

σx x-polarized spectrum 

σy y-polarized spectrum 

σz z-polarized spectrum 

Ix x-directed spectrum 
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Iy y-directed spectrum 

Iz z-directed spectrum 

Table 1: Terminology and symbol definitions used in this work. 

Polarized Dipole Components 

The x-ray emission intensity from a given initial state i is expressed in Eq. 1. The total spectrum 

comes from the sum over Fermi’s golden rule for all final states f [37]. The energy ℏω is the energy 

of the radiation, m is the mass of the electron, 𝑟 is the spatial coordinate vector, and 𝑘⃗⃗ (|𝑘⃗⃗| = 2π/λ) 

is the propagation vector of the photon [37–39]. The orientation of the emitted radiation is entirely 

described by 𝑘⃗⃗ and the polarization unit vector 𝜖, which is orthogonal to 𝑘⃗⃗. 

  (1) 

If we approximate the wavelength of the photon, λ, to be much larger than the size of the 1s shell, 

λ ≫ r, we arrive at the dipole approximation in Eq. 2. The dipole transition operator is given by 

∑ 𝜖𝛼̂ ⋅ 𝑟𝛼 . The isotropic spectrum is equivalent to taking the average of the trace of the polarization 

tensor. 

                             (2) 

We refer to the observables σx, σy, and σz as the polarized spectra. They represent the emission 

intensity as a function of energy for a dipole transition along a given axis, and they are the quantity 
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that polarization analysis of a single-crystal XES study seeks to determine. For information about 

how the radiation pattern of dipole (and higher order) transitions, please refer to Supplemental 

Information section A. The dipole selection rules restrict transitions to be between orbitals that are 

related by ∆l = ±1, which follows from the fact that the position operators x, y, and z transform as 

components of a spherical tensor of rank 1 and thus only connect states whose angular momenta 

differ by one unit [40]. 

The spectrum corresponding to a photon with wave vector 𝑘⃗⃗ will have a polarization 

perpendicular to the direction of propagation [41]. The intensity of the emitted photon is symmetric 

azimuthally about the dipole transition moment axis, which means that the measured emission 

along a given axis is composed of an equal mixing of the two signals with polarization 

perpendicular to the direction of propagation. The system of equations which gives the unpolarized 

intensity measured from a photon propagating in a given direction (Ix, Iy, and Iz) is shown in Eq. 3, 

where σx, σy, and σz correspond to the spectra from the x, y, and z dipole transition operators 

respectively. 

  (3) 

6.2.3 Toy Model of CtC-XES 

Local anisotropy is often reflected in the (projected) electronic density of states of the valence shell 

of metal ions. For the purpose of demonstrating the origin of polarization effects in CtC-XES, we 

investigate how anisotropy in the valence level electron configuration is transferred to other levels 

via the electron-electron Coulomb interaction. This will be crucially instructive for demonstrating 

how the electron configuration can be inferred from the polarized CtC-XES of real systems, as we 

will see in section 4. 
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We consider a toy system of one d electron and one p electron, fixing the d electron to be 

spin down in the dxy orbital. The choice of dxy for this example is arbitrary, but in a real system will 

be determined by valence level splitting from crystal field effects. The Coulomb Hamiltonian is 

given in second quantization in Eq 4a, where τ = σ,m,l,n denotes the spin and orbital degrees of 

freedom. The two particle Coulomb operator between the p and d orbitals can be split into spherical 

(Θk[τ1τ2τ3τ4]) and radial (Rk[τ1τ2τ3τ4]) components (Eq. 4b), and further split into the ‘direct’ (HFpd
(0)

, 
  

HFpd
(2) ) and ‘exchange’ (HGpd

(1) , HGpd
(3) ) terms (Eq. 4c) [42]. The Slater-Condon F and G terms 

are usually determined by the overlap of the radial wave functions, but in this toy Hamiltonian we 

just set Rk = [Fpd
0 ,G1

pd,Fpd
2 ,G3

pd] = [1.2,8.0,9.0,5.0] to approximate the interaction between the 3p 

and 3d orbitals in the final state of a Kβ XES process. 

                                                      (4a)

  (4b) 

  (4c) 
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Table 2 shows the contributions to the total energy for different p, d configurations. These 

were calculated using the many-body second quantization code Quanty to encode the toy 

Hamiltonian [43]. The direct terms HFpd
(0) and HFpd

(2) are always non-zero, with the HFpd
(0) term 

corresponding to a 

 

Figure 1: The polarized dipole p → s emission spectra and final states of our toy system described 

by Eq. 4. Only final state configurations with a spin down electron in the dxy orbital are calculated. 

The top row shows the spectra for different dipole transition operators (x, y, and z). The middle 

row shows the expectation value of the total system ⟨S2⟩ operator for the final states. The last row 

shows the singlet configuration corresponding to the p core hole created by each of the dipole 

transition operators 
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Figure 2: The polarized dipole p → s emission spectra for a final state described by Eq. 4, but with 

two electrons pinned into the same dxy orbital. The top row shows the emission spectra for each 

polarization and the bottom row shows the singlet configuration of each final state. 

d-Orbital d-Spin p-Orbital p-Spin 

Spin 

Aligned? 

     

dxy down px down yes -0.885 0.748 0.457 -1.600 -0.490 

dxy down px up no 1.205 0.748 0.457 0.000 0.000 

dxy down py down yes -0.885 0.748 0.457 -1.600 -0.490 

dxy down py up no 1.205 0.748 0.457 0.000 0.000 

dxy down pz down yes -0.473 0.748 -0.914 0.000 -0.306 

dxy down pz up no -0.167 0.748 -0.914 0.000 0.000 

Table 2: Table of Coulombic d-orbital and p-orbital interactions for a system with one d electron 

constrained in the spin down dxy fermionic mode and one p electron. 
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spherically symmetric constant contribution and the HFpd
(2) changing signs and magnitude 

according to whether the occupied orbitals have overlapping symmetry. This behavior is 

effectively an inter-orbital Hund’s rule [44]; when the d and p electrons have overlapping 

symmetry (ex: dxy and px) the energy of that configuration is raised compared to when their 

symmetries do not overlap (ex: dxy and pz). 

The exchange terms HGpd
(1) and HGpd

(3) come from the fermionic behavior of electrons which 

energetically split spin-aligned configurations from spin-opposed. Hund’s principle of maximum 

multiplicity leads to systems with aligned spins having lower energy than when spins are opposed. 

The exchange terms behave similarly to the direct terms in that the magnitude of the interaction is 

larger when the symmetries of the two occupied orbitals are overlapping, but the contribution to 

the total energy is always negative. The behavior of the exchange Coulomb terms is what gives 

sensitivity to spin in CtC-XES, where for example the Kβ′ peak changes depending on whether a 

system is in a high spin or low spin configuration [18]. 

We demonstrate how this behavior in Fig. 1 combines with the difference in Coulomb 

interaction based on symmetry overlap to give polarized spectra. Starting from an initial state 

with six p electrons and an s core hole, we use the x, y, and z dipole transition operators to 

control where the unpaired electron in the p orbital ends up in the final state. The final state is 

constrained to have the single d electron in the dxy orbital, meaning that our final states are 

analogous to the six rows shown in Table 2 (up to an overall shift). Note that the peak 

corresponding to a spin-aligned (triplet) final state is higher energy then the spin-opposed 

(singlet) peak. This is because the emission energy is equal to the difference in energies between 

the initial and final states. 
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Quanty was used to calculate the p → s polarized dipole emission spectra. The first row 

in Fig. 1 shows x, y, and z polarized emission spectra. We note that the x and y polarized 

emission are identical with a large splitting between the singlet and triplet states, while the z 

polarized emission has a much smaller splitting. An important note is that because we are 

neglecting spin-orbit splitting in this toy model the multiplicity of the entire system ⟨S2⟩ is a good 

quantum number, and it allows us to distinguish the configurations as seen in the second row. 

The singlet configuration for each final state is shown in the last row. For more information 

about the quantitative behavior of the splitting between the singlet and triplet states we refer 

readers to the theory discussion in Lafuerza et al. [19]. The splitting between these 

configurations is the same mechanism that underpins the spin-dependence of the Kβ’ peak in 3p 

→ 1s XES. The behavior of this toy system highlights a key result, namely that the intensity and 

position of the Kβ’ in polarized emission can be a reflection of orbital occupation as well as the 

spin state. 

A simpler, but equally useful result comes from adding a second electron into the dxy orbital, 

see Fig. 2. The addition of a second electron takes the system from a spin-1/2 to spin-0 

configuration and removes the split singlet-triplet behavior. While the final states of the non-

degenerate polarizations will still experience an overall shift in energy, the effective anisotropy in 

the spectra becomes much weaker. 

The toy model here is simple, but the results are generic. We have demonstrated how the 

polarized emission of CtC-XES is sensitive to the occupation of the valence orbitals via the 

Coulomb exchange interaction. Consequently, any symmetry breaking perturbations (crystal field, 

charge transfer) will also be reflected in the spectra. This is distinct from the polarization sensitivity 
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observed in absorption techniques like L2,3 XLD or XMCD, where the electron transitions from p 

into d provide a direct probe of the unoccupied density of states in the presence of a core hole. 

6.2.4 Crystal Systems 

We study two transition metal compounds: LiVCuO4 and DyNiC2. Both materials are studied at 

room temperature. The crystal structure of LiVCuO4 [26] is shown in Fig. 3. CuO4 ladders run 

through the ab plane, and have a nearly perfect square planar bond orientation with a small 

rhomboidal distortion, giving the Cu-O cluster a point group of D2h. The Cu(II) ion leaves the 

system with nd = 9. The crystal field splitting for the local cluster around the Cu leaves a single 

unpaired d-electron and a spin-1/2 system [45]. 

The DyNiC2 structure is shown in Fig. 4 and has a structure of alternating Ni-C and Dy sheets in 

the bc-plane [46]. The local Ni-C cluster is a strongly distorted square planar structure with a point 

group C2v. The Ni(II) ion has nd = 8. Low-symmetry clusters, like DyNiC2, experience spin-

quenching when the crystal field split levels all lose their degeneracy [47], hence the nd = 8 

configuration here is fully spin-paired, leading to a spin-0 system. 

Both systems have orthorhombic unit cells and therefore the crystal axes are orthogonal. 

For describing the direction of propagation and polarization of the x-ray emission we will use the 

x, y, z coordinate convention with the obvious mapping to the a, b, c crystal axes. 
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Figure 3: (a) LiVCuO4 crystal structure. (b) Face down view on the a-b plane of square planar Cu-

O chains. 

6.3 Methods 

6.3.1 Experimental Setup 

All XES measurements were performed at room temperature on a laboratory spectrometer 

described in Jahrman et al. [48], using a 100W x-ray source with a Pd anode, 10-cm diameter 

spherically bent crystal analyzer (SBCA), and an Amptek X-123 silicon drift detector on a 1-m 

Rowland circle. The x-ray tube was held at 2.8 mA current and 35 kV accelerating potential. A 1-

mm entrance slit and a mask that covers the outer 30 mm on either side of the SBCA were used to 

reduce the experimental broadening. Measurements were made with 0.25 eV steps around the 

features of interest and 1 eV steps outside this region for background determination. Each spectrum 

was collected over multiple scans, with the specific number of scans chosen to obtain a total of at 

least 10,000 counts for the Kβ1,3 peak and ∼1000 counts for the Kβ2,5 peak. The first and last few 

scans were compared and showed no evidence of beam damage. 
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As shown in Fig. 5, two spectrometer geometries were used to obtain the unpolarized and 

partially polarized XES measurements, using high and low Bragg angles, respectively. Specific 

Bragg angles are shown in Table 3. All SBCA were used in symmetric reflection geometries. The 

experimental broadening is ∼3-eV greater for the low Bragg angle geometry compared to the high 

Bragg angle, shown for reference spectra in Fig. 6, due to source size and Johann error broadening 

being worse for smaller Bragg angles [49–51]. 

Polarization control was achieved by exploiting the difference in reflectivity of emission 

from photons polarized perpendicular (s-polarized) versus parallel (p-polarized) to the reflection 

plane, see Fig. 7. The reflectivity of these two polarizations is calculated with Fresnel’s equations 

[52] using the index of refraction for Si or Ge at x-ray energies. This gives a ratio of emission 

reflecting off 

 

Figure 4: (a) DyNiC2 crystal structure. (b) Face down view on the b-c plane of distorted square 

planar Ni-C chains. 
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the SBCA with polarization parallel (Rp) versus perpendicular (Rs) to the Rowland plane of ∼0.2 

for low Bragg angles and ∼0.85 for high Bragg angles. Therefore using the spectrometer at low 

Bragg angles achieves selection of x-rays that are primarily polarized perpendicular to the 

Rowland plane, meaning that we detect a partially polarized spectra. By orienting the emitting 

sample with a chosen crystallographic axis perpendicular to the Rowland plane the partially 

polarized spectra show the transition intensity along the specific axis. 

6.3.2 Samples and Sample Orientation 

Photographs of the two samples are shown in Fig. 8 (a) and (b). Both samples are plate-like having 

4-mm to 8-mm spatial extent in their planar directions and are thinner (∼1-mm) in the 

perpendicular direction. The LiVCuO4 crystal was grown from LiVO3 flux cooled by 0.1K/hour 

from ∼880K as described in Grams et al. [53]. Single crystal X-ray diffraction was performed to 

confirm the structure and to orient the crystal. The DyNiC2 crystal was grown and characterized 

following the procedure described in Roman et al. [28]. The crystal was synthesized using pure 

elements and the floating zone technique. It was oriented with Laue method and then characterized 

by scanning electron microscopy, powder x-ray diffraction to confirm crystal growth and 

homogeneity. 

The samples were oriented in the spectrometer on a custom 3D printed mount for each 

measurement so one crystallographic axis is perpendicular to the Rowland plane and another is 15 

degrees from the emission direction. An example of this mounting is given in Fig.8 (c). The 15 

degree offset allows for a much higher count rate with a small correctable loss of directionality 

along the in-plane crystal axis, discussed in Section 3.4.3. Reference Cu and Ni foils that were 
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used during the calibration process were procured from ESPI metals being 99.995% elementally 

pure. 
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Figure 5: Rowland Circle geometry for unpolarized, (a), and partially polarized, (b), CtC and VtC 

Kβ XES measurements. For each geometry the first SBCA is for Cu measurements and the second 

is for Ni measurements. 

 

Figure 6: Cu foil Kβ x-ray emission spectra taken at high (orange) and low (green) Bragg angle. 

 



 

168 
 

Figure 7: The calculated ratio of reflectance of x-rays with polarization parallel to the Rowland 

plane (Rp) verse perpendicular to the Rowland plane (Rs) as a function of Bragg angle for the 

SBCA. The minimum and maximum Bragg angles for the unpolarized (red) and partially polarized 

(green) XES spectra are marked. 

 

Figure 8: (a) LiVCuO4 single crystal sample. (b) DyNiC2 single crystal sample. (c) DyNiC2 sample 

shown positioned in the spectrometer sample environment for z-polarized, y-directed (σz, Iy) XES 

spectra. 

Emission Spectrometer 

Emission 

Line Polarized SBCA θB (deg.) 

Pol. 

Factor 
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Cu Kβ No Si (553) 80 0.88 

Cu Kβ Partial Ge (444) 58 0.19 

Cu VtC No Si (553) 78 0.84 

Cu VtC Partial Ge (444) 58 0.19 

Ni Kβ No Si (551) 81 0.91 

Ni Kβ Partial Ge (620) 57 0.17 

Ni VtC No Si (551) 80 0.88 

Ni VtC Partial Ge (620) 57 0.17 

Table 3: Emission line, polarization classification, analyzer, Bragg angle, and polarization factor 

(Rp/Rs) for all studies presented in this work. See Fig. 5 for graphical representations. 

6.3.3 VtC-XES Computational Details 

To calculate the VtC-XES and the l,m projected density of states (DOS) we use the real-space 

Green’s function code FEFF10 [54] which calculates a single-particle Green’s function where 

many-body interactions are approximated via the LDA exchange-correlation potential. This is 

sufficient for valence level spectroscopies due to the more delocalized nature of the orbitals 

involved in bonding, and has been demonstrated to perform similarly to time-dependent DFT 

approaches for VtC-XES [55]. The x, y, and z polarizations are calculated using the 

POLARIZATION card and we include both electric dipole and quadrupole transitions with the 

MULTIPOLE card. While the main contribution to the VtC-XES of 3d transition metals comes 

from the p DOS from the dipole transition, roughly 10% of the intensity can come from quadrupole 
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transitions from the s and d DOS, as demonstrated in Mortensen et al. [56] and in Supplemental 

Information section B. 

The potentials and densities were calculated with the self-consistent field (SCF) approach 

and an SCF radius of 5.0 A around the emitting atom and the spectra were calculated with a full 

multiple˚ scattering (FMS) radius of 7.0 A. The XES was calculated using the standard practice of 

omitting˚ the core hole in accordance with the final state rule. The lifetime broadening from the 

core hole is already included within FEFF spectra, and a 1.0 eV FWHM Gaussian broadening was 

convolved with the spectra for comparison with experiment. Spectra were energy shifted 

independently to align with experiment, which is necessary to account for limitations from the 

muffin-tin potentials used within FEFF [56]. An extended version of the FEFF code was use to 

calculate the real spherical harmonic projected density of states, which can be directly compared 

to the x, y, z polarized spectra. 

6.3.4 Data Processing Procedure 

CtC-XES 

The CtC Kβ spectra were processed by first averaging all spectra for one sample orientation. A 

background subtraction calculated from the first and last 5 eV of the spectrum was applied, 

followed by an integral normalization over the background subtracted spectrum. A unique Bragg 

angle correction is 
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Figure 9: Kβ XES scans of the LiVCuO4 single crystal sample as it is stepped across the entrance 

slit and the summation of these scans. A vertical gray dashed line marks the center position of the 

Kβ1,3 peak, found by a fit to the summation. This energy is used to apply a Bragg angle correction 

to the sample spectra, positioning it correctly in energy relative to a Cu foil reference spectra. 

applied to the spectrum to position it in energy relative to a foil reference spectra. This is necessary 

because of the sensitivity of the energy scale to the sample position’s relative to the entrance slit 

when the sample is not large enough to fully illuminate the entrance slit, a limitation that is related 

to the issue addressed in Abramson et al. [57]. Following that work, we find that summing a series 

of alignment scans as the sample steps across the entrance slit creates an effectively-large sample 

spectrum that fully illuminates the entrance slit. This set of scans can be used to finely calibrate 

the energy scale for the final measurement with a stationary, small sample - see Fig. 9. The 

calibration procedure involves comparing the resulting effectively-large sample spectrum’s and 

the normalized, background subtracted spectrum’s Kβ1,3 energy to find the Bragg angle offset that 

corrects for the actual illumination of the entrance slit. This step is followed by the usual Bragg 

angle correction applied equally to all reference and sample spectra to align the Cu and Ni foil 
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reference Kβ1,3 energy with their published, standard values. This process aligns both the partially 

polarized and unpolarized spectra on the same energy scale for comparison. 

VtC-XES 

VtC-XES spectra were processed by summing all scans for one orientation then subtracting a 

constant background calculated by averaging the highest 5 eV of data. This was followed by 

normalization of the VtC region with the integral of the Kβ1,3 and Kβ′ features to bring the VtC 

spectra to a consistent molar scale [58]. The Bragg angle corrections determined by the CtC Kβ 

XES are similarly applied to the VtC-XES. 

Polarized Spectra Extraction 

X-ray emission propagating in a particular direction (ex: z) is a combination of emission from 

predominantly dipole transitions in the plane perpendicular to this direction of propagation (x and 

y). For the Rowland circle spectrometer, the direction of propagation is towards the SBCA, and 

the two polarizations which can reach the detector are orthogonal to the propagation direction: in 

the Rowland plane (p) and perpendicular to the Rowland plane (s). The ratio of s and p 

polarizations which reach the detector depend on the Bragg angle, laid out in Fig. 7 and Table 3. 

Due to the 15 degree difference between crystallographic axis and emission direction in the 

Rowland plane (Section 2.4) the p-polarization has contribution from polarized spectra along two 

crystallographic axis while s-polarization is only from the polarized spectra of the out of plane 

axis, example shown in 8(c). 

By measuring the emission spectra from a sample along three linearly independent 

directions, a system of equations is created where each directed spectra is an linear combination 

of the underlying polarized spectra. The relationship between measured intensities and the 
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underlying polarized emission along the x-, y-, and z- directions is given in Eq. 5. The linear 

combination coefficients, A, have a geometric component due to the 15 degree difference between 

crystallographic axis and emission direction in the Rowland plane (Section 2.4) and a reflectivity 

component due to the Rp/Rs ratio of the Rowland circle geometry. A in Eq. 5b is given for DyNiC2 

with the second row matching the sample orientation shown in Fig. 8(c). With A being known, we 

extract the polarized spectra by matrix inversion. 

At high Bragg angle, Rp/Rs is ∼0.85, requiring the extraction procedure of Eq. 5 to infer 

the polarized spectra from the measured unpolarized directional spectra. At low Bragg angle Rp/Rs 

is ∼0.2 which heavily favors the out of plane polarization. Performing the dipole extraction on the 

measured partially polarized directional spectra changes the integral intensity by ∼5 percent, 

meaning that the measured partially polarized directional spectra are approximately equal to the 

polarized spectra. An important note here is that this extraction procedure will only be exact for 

dipole transition spectra. Because the spectra we study in this work are all highly dipole dominated 

(see Figures 13 and 14), we will only consider the previously mentioned extraction procedure. 

 

(5a) 

 (5b) 

6.4 Results and Discussion 

6.4.1 CtC-XES 

We expect core-to-core transitions to demonstrate relatively weak polarization sensitivity given 

that local environmental effects are only reflected through a coupling between the core hole and 
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valence level, as we discussed in Section 2.3. The size of the effect is demonstrated through 

experimental spectra in Fig. 10. The left and right columns show the Kβ emission from LiVCuO4 

and DyNiC2 respectively. The top (a, b) row shows the unpolarized spectra and the bottom (c, d) 

row shows the extracted polarized spectra along the crystallographic directions using the procedure 

laid out in Section 3.4.3. 

While the overall anisotropic signals in both CtC Kβ spectra are weak, one key observation 

is the polarization dependence of the Kβ’ feature. The spin-1/2 Cu in LiVCuO4 shows a significant 

difference between the σz spectrum and the σx/σy spectra. This, along with knowledge of the crystal 
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Figure 10: (left) LiVCuO4 Cu and (right) DyNiC2 Ni Kβ CtC-XES. (a, b) Unpolarized emission at 

high Bragg angle from radiation propagating along the x (blue), y (red), and z (brown) directions. 

(c, d) polarized spectra extracted from the directional spectra in (a, b) with polarizations along the 

x (purple), y (green), and z (orange) directions. Difference curves are shown at the bottom of each 
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subplot and are calculated by subtracting the average spectra from each curve. Note the 

polarization dependence in the Kβ’ feature for LiVCuO4. 

field symmetry from the C2v Cu cluster, allows us to determine that the unpaired electron and thus 

the single 3d hole lies in the dxy orbital (using the crystal axes as a basis). 

When the polarization vector is in the xy-plane, the interaction between the newly unpaired 

3p electron and the unpaired 3dxy electron produces an energy difference between the spin-aligned 

(triplet) and spin-opposed (singlet) configurations, leading to a more prominent Kβ′ satellite. 

Conversely, when the polarization vector of the emission is along the z-axis, the symmetry of the 

core hole and the unpaired valence electron do not match and the interaction is weaker, leading to 

a less prominent Kβ′ feature and a larger Kβ main peak for the z-polarized spectra in Fig. 10 (c). 

These energy shifts of the Kβ′ peak are qualitatively consistent with the behavior observed in the 

toy model and Figure 1, reinforcing our underlying physical interpretation. 

The Ni in the DyNiC2 system is spin-0 and therefore produces no Kβ′ feature. The absence 

of a singlet-triplet splitting interaction limits the anisotropic signal to small changes in the energy 

and intensity of the Kβ1,3 main peak. This is similar to what we observe in Fig. 2 of the toy model, 

where having a spin-0 valence suppresses anisotropy in the polarized spectra. The overall weak 

polarization dependence of the main Kβ1,3 is not unexpected given it is a second-order property 

transferred to the core level through the core-valence Coulomb interaction. 

6.4.2 VtC-XES 

The Cu and Ni VtC emission from LiVCuO4 and DyNiC2 are shown in Fig. 11. Unpolarized (high 

Bragg angle) and partially polarized (low Bragg angle) are shown in subplots (a, b) and (c, d) 

respectively. The extracted polarization spectra in subplots (e, f) are calculated from combinations 
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of the directional spectra, as described in the system of equations given in Section 3.4.3. The theory 

spectra in subplots (g, h) are calculated according to Section 3.3, and follow the exact same 

extraction procedure for the purpose of comparison. 

The directed emission spectra (a, b) show weakly anisotropic behavior, which is expected 

given that they are averages of two polarization contributions. The partially polarized spectra in 

(c, d) qualitatively match with the polarized spectra (e, f) and the calculated polarized spectra (g, 

h). They show clear polarization differences, such as the ability to distinguish which polarized 

spectra are most contributing to the Kβ′′ ligand peak or Kβ2,5 feature, indicating the usefulness of 

these spectropolarimeter measurements. But the ∼20 percent contribution of in-plane polarized 

spectra, Fig. 7, and the lower resolution, Fig. 6, for the partially polarized measurements restricts 

its quantitative analysis. 

For LiVCuO4 the nearly square planar CuO4 structure means the Cu-O bonds lie in the xy-

plane. This geometry means that the Cu dz2 orbital lacks suitable ligand orbitals to form σ bonds, 

leading to reduced electron density along the z-axis and, consequently, weaker z-polarized (σz) 

emission compared to the x and y polarizations. The unpolarized Iz emission in (a) is therefore 

stronger than the Ix and Iy signals, as it averages over stronger in-plane transitions. Similarly, the 

partially polarized and extracted polarized spectra in (c) and (e) show suppressed σz contributions, 

while σx and σy remain strong and nearly identical due to the symmetry of the in-plane bonding 

environment. This also accounts for the presence of the Kβ′′ ligand peak at 8958 eV in both σx and 

σy. 

For DyNiC2, the distorted planar structure leads to highly anisotropic emission, with the σy 

spectrum being the strongest, followed by σz, and then σx, which is the weakest due to the absence 

of a Ni–C bond along the x-direction. This is analogous to the lack of Cu-O bonding along the z-
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axis in LiVCuO4. The distortion of the NiC4 cluster results in non-equivalent σy and σz spectra. The 

differences are consistent with the Ni–C bond angles in the bc-plane: an average of 42.78◦ relative 

to the 
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Figure 11: (left) LiVCuO4 Cu and (right) DyNiC2 Ni VtC-XES. Difference curves are shown below 

each subplot where the difference is taken relative to the averaged (isotropic) spectrum. (a, b) 
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Measured unpolarized emission from radiation propagating along the x, y, and z directions as 

defined by the coordinate systems in Section 2.4. (c, d) Measured partially polarized emission, 

where each spectrum is dominated by a single polarization axis, albeit with poorer energy 

resolution. (e, f) Extracted polarized spectra. (g, h) Calculated polarized emission, including both 

electric dipole and quadrupole components. 

b/y-axis and 37.08◦ relative to the c/z-axis. This slight compression along the z-axis manifests in 

the spectra as a ∼3 eV energy shift of the σz Kβ2,5 emission peak compared to the σy one, and a 

more intense C ligand peak at 8316 eV in the z-polarization. 

In both DyNiC2 and LiVCuO4, the Kβ′′ satellite is relatively weak compared to the main 

Kβ2,5 peak, a trend attributable to the long metal–ligand bond distances—1.96 A˚ for Ni–C bonds 

in DyNiC2 and 2.14 A˚ for Cu–O bonds in LiVCuO4 [36]. This reduces the hybridization between 

the ligand 2s and metal valence orbitals, thereby suppressing the weak Kβ′′ feature. Additionally, 

the Kβ′′–Kβ2,5 energy separation is roughly 5 eV greater in LiVCuO4 than in DyNiC2, reflecting the 

difference in 2s binding energies between O and C ligands [59]. 

The extracted polarization spectra in subplots (e, f) match well with the calculated 

polarized spectra in subplots (g, h), and their residuals. However, one important difference between 

the calculated and extracted is that the position of the calculated Kβ′′ peak is too low in energy by 

about 2 eV compared to experiment. This is likely due to limitations imposed by the use of muffin-

tin potentials within the FEFF code to approximate the scattering potential, which tend to 

underestimate the anisotropy of the electron density in the interstitial regions. As a result, the 

hybridization between the transition metal 3d and ligand 2p states may be overestimated, 

artificially shifting the energy position of the Kβ′′ peak. 
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6.4.3 Future Directions 

The spectropolarimetry to directly measure the polarized spectra (low Bragg angle) suffered as a 

analytical measurement from low resolution and only partial polarization sensitivity. Both factors 

can be greatly improved upon by working in an asymmetric Rowland configuration [60], allowing 

for a selection of reflection geometry with near 45 degree Bragg angle for perfect polarization 

sensitivity with emission incident perpendicular to the SBCA face reducing one of two main 

broadening mechanisms, Johann error [49]. If the spectropolarimetry measurements were 

performed with the optimally polarized asymmetric Rowland geometry and with micro-focused 

synchrotron radiation the other main broadening mechanism, source size error, could be eliminated 

resulting in a direct, high-fidelity measurement of polarized spectra. 

An additional benefit of performing the direct polarized measurements at a synchrotron 

source is the increased flux which allows for resolving weaker spectral features such as quadrupole 

transitions, which depend on both the direction of propagation and the polarization axis, adding an 

extra layer of complexity. Because quadrupole transitions are much weaker than the dominant 

dipole transitions (see Supplemental Information B), their detection requires careful analysis of 

intensity variations with crystal orientation. Lower experimental broadening and increased flux 

would make it significantly easier to isolate and identify these subtle features. 

6.5 Conclusion 

We have shown that the anisotropy observed in the polarized CtC and VtC-XES emission spectra 

reflects the local asymmetry around the 3d transition metal in single crystal systems. The polarized 

emission along a specific crystallographic direction is obtained directly via partially polarized 

measurements using single crystal spectropolarimetry and indirectly with a new technique to 
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extract polarized spectra from unpolarized emission. The polarized emission provided information 

about the symmetry of the local electronic structure, allowing us to determine the anisotropic 

distribution of the occupied magnetic orbitals. By combining these results with a polarized 

absorption study, such as an XLD analysis of the Cu and Ni K-edges, our findings could be further 

corroborated by looking for a polarization dependent pre-edge feature. In this way, combining both 

absorption and emission techniques would provide a more complete understanding of the orbital 

anisotropy and would help disentangle the full anisotropic electronic structure of complex 

materials. 

The CtC Kβ features showed clear polarization dependence for Cu in LiVCuO4, which can 

be attributed to the spin-1/2 nature of Cu2+. This allows for Coulomb coupling between the 3p and 

3d orbitals. The emission weight shifts toward the Kβ′ feature when the polarization is in the ligand 

plane and toward the Kβ1,3 feature when it is perpendicular to the plane. In contrast, DyNiC2 

contains Ni2+ in a spin-0 configuration, and its CtC spectrum showed little to no polarization 

dependence. This contrasting behavior is consistent with predictions from a simple toy model. 

In the VtC region, both systems exhibited strong polarization effects. The Kβ′′ and Kβ2,5 features 

became more intense when the polarization aligned with metal-ligand bond directions, consistent 

with expectations based on orbital occupation. Additionally, the Kβ′′ peak entirely disappeared for 

out of-plane polarizations, further emphasizing the directional nature of the metal-ligand bonding. 

These trends were qualitatively reproduced by FEFF calculations, reinforcing the interpretation 

that VtC XES is sensitive to directional bonding and orbital interactions [55]. 

Overall, these results establish polarization-resolved XES as a tool for probing anisotropic 

electronic environments in transition metal systems. This technique provides access to subtle 

variations in the character of the occupied orbitals, which could be leveraged in future studies to 
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resolve weak quadrupole transitions and characterize ligand field asymmetry. Just as conventional 

XES complements conventional XAS by probing the occupied density of states, polarized XES 

serves as a natural complement to polarized XAS, offering a more complete picture of directionally 

resolved electronic structure. 
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6.6 Appendix 

6.6.1 Directional and Polarization Dependence of Emitted Radiation 

The radiation pattern of any dipole or quadrupole transition element between two hydrogenic 

orbitals can be calculated by directly integrating the matrix elements from Eq 2 (dipole) and Eq 6 

(quadrupole) for an arbitrary ⃗k. The propagation vector ⃗k and polarization vector ⃗ϵ are given in 
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Eq 7, where δ is the angle ⃗ϵ makes in the plane perpendicular to ⃗k which will be integrated out. 

This follows the same convention established in [38]. 

  (6) 

 

(7a) 

 (7b) 

For example, the angular component of a dipole transition from a pz orbital to a s orbital is written 

out in Eq 8, where θ, ϕ, and δ are as defined in equation 7, and ρ and ω are dummy variables used 

for evaluating the matrix element. The matrix element ends up simply as ⟨s|⃗ϵ · ⃗r|pz⟩ ∝ sinθ, and 

the radiation pattern is given by (sinθ)2, as is shown in Fig. 12 (a). We also show examples for the 

px → s, dz2 → s, and dxy → s. The surface of the radiation pattern gives a qualitative measure of 

how much radiation is emitted in a particular direction from a given dipole transition element. 

Given the generalized definitions of ⃗k and ⃗ϵ, it’s possible to invert them and derive the 

’polarization’ pattern for a fixed polarization direction and a propagation vector integrated over a 

plane (δ), which of course produces the exact same patterns but with a different interpretation. 
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  (8) 

6.6.2 Additional FEFF calculations 

X-ray emission is often interpreted as a reflection of the occupied density of states [18, 19, 61] in 

the presence of a core hole. We see this represented in figures 13 and 14 which show how the 

polarized VtC-XES in subplot (a) matches up almost exactly with the p-projected DOS in subplot 

(c). We also note that the quadrupole contribution shown in subplot (b) is relatively weak, with it 

making up only 10% and 3% of the total spectral intensity for LiVCuO4 and DyNiC2 respectively. 

This supports the approximation made when extracting the polarizations from the directional 

spectra. The main contribution to the quadrupole transition is the d-projected DOS which is much 

larger (in units of electron/eV) than the p-DOS. The overall weak contribution to the total spectra 

is due to the additional 𝑘⃗⃗ term in the quadrupole matrix element and the small overlap between the 

metal 3d orbital and 1s orbital.  



 

186 
 

 

Figure 12: Radiation pattern of dipole and quadrupole transitions between different l, m orbitals. 

(a) and (b) show dipole transitions from the pz and px to s orbitals respectively while (c) and (d) 

show quadrupole transition from the dz2 and dxy to s orbitals. The shape of the radiation patterns are 

equivalent to oscillating charges with spatial distributions that are consistent with the lobes of 

positive and negative phases from each atomic orbital. 
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Figure 13: FEFF calculated Cu VtC spectra and DOS from LiVCuO4. (a) Polarized x-ray emission 

with the quadrupole component averaged over directions perpendicular to the polarization axes. 
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(b) Isotropic emission separated into dipole (red) and quadrupole (blue) components. (c) The p-

projected density of states. (d) The d-projected density of states. 
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Figure 14: FEFF calculated Ni VtC spectra and DOS from DyNiC2. (a) Polarized x-ray emission 

with the quadrupole component averaged over directions perpendicular to the polarization axes. 

(b) Isotropic emission separated into dipole (red) and quadrupole (blue) components. (c) The p-

projected density of states. (d) The d-projected density of states. 
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Chapter 7  Conclusion 

7.1 Summary of Results 

Starting with a precursor DFT calculation, the traditional theoretical technique of MLFT has 

been improved to become a much strong predictive tool. This brings MLFT closer to state-of-

the-art quantum chemistry techniques while maintaining the intuition and simplicity of a model 

Hamiltonian approach. Here this improved DFT+MLFT technique has been applied to x-ray 

emission for the first time and has been demonstrated to perform well across multiple highly 

correlated 3d transition metal systems. Specifically, the theory was validated by assessing how it 

treated charge transfer effects in the presence of a core-hole, and it was demonstrated that the 

model was consistent with the expected experimental behavior across oxidations states. 

These results led directly to a second project which addressed a previously undiscovered 

resonant shake effect in the Kα XES of 3d0 materials. Here I proposed a model that allowed for 

mixing between core-holes in the two 2p spin-orbit split levels when the energy splitting between 

them matched a valence level bonding to antibonding transition. This model was later validated 

by using it to predict a second shake excitation on the tail of the Kα2 peak, which was 

experimentally confirmed. This was only possible due to the constrained phase space achieved 

through the DFT + MLFT approach, and is the first example that this author is aware of the 

MLFT technique being used for predictive studies instead of interpretive ones. 

In parallel with these theoretical advancements in Kα XES, I also contributed to the 

development of a reliable experimental method for polarized X-ray emission spectroscopy. 

Specifically, I have used MLFT and real space Green’s function theory to build a framework for 

disentangling complex polarization-dependent spectral features in CtC and VtC XES. This work 
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explores how the polarized XES can be directly linked to specific features in the occupied 

density of states, enabling deeper insight into orbital-level electronic structure and crystal field 

effects. While a robust experimental geometry was established to enable polarized 

measurements, the strength of this work lies in showing how polarization-resolved spectra can be 

predicted, understood, and used as a spatially sensitive probe of local geometric and chemical 

features. 

7.2 Future Outlook 

One particularly promising framework for continually improving the DFT + MLFT 

approach is the addition of dynamical mean field theory (DMFT) to the pipeline. This will help 

better capture many-body screening effects and is especially relevant for systems with strong 

hybridization, where the perturbed ionic model breaks down. A DFT + DMFT + MLFT approach 

would allow for a more faithful treatment of charge transfer behavior while retaining the 

interpretability of the ligand field basis. While DMFT does not address the question of the 

remaining free parameters (in fact it introduced a new double-counting correction parameter), it 

may also provide an avenue to include more nonlocal Coulombic interactions through an 

impurity model than includes retarded interactions or GW+DMFT, allowing screening from 

nearby metal sites. 

From an experimental perspective, substantial gains can also be made in the 

spectropolarimetry measurement of polarized XES. The current low-Bragg-angle geometry 

suffers from limited resolution and incomplete polarization selectivity, limiting its ability to serve 

as a high-fidelity validation tool for theory. These limitations can be overcome by adopting an 

asymmetric Rowland geometry with a high Bragg angle near 45°, which would both maximize 

polarization contrast and reduce Johann broadening. Additionally, performing these 
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measurements at a micro-focused synchrotron beamline would reduce the source size 

broadening, resulting in much sharper spectral features. Such an experimental setup would not 

only allow for clearer validation of theoretical models but also make it possible to detect weak 

transitions, such as quadrupole features. 
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Chapter 8  Appendix 

8.1 Non-zero dipole matrix elements 

 Here I provide a series of tables that show which combinations of atomic orbitals have 

non-zero dipole matrix elements. Each element in a table is either 0, indicating that there is no 

non-zero dipole matrix elements, or x, y, or z, which indicates the specific dipole operator that 

connects those two orbitals. Ex: The x dipole operator connects the py and dxy orbitals, meaning 

that ⟨𝑝𝑦|𝑥|𝑑𝑥𝑦⟩ ≠ 0. 
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8.2 DFT + MLFT Script Pipeline  

Preface 

All of the scripts used in this automation pipeline are adapted from the ones provided by 

Maurits Haverkort at the bi-annual Heidelberg workshops, and can be found on the Quanty 

website (https://www.quanty.org/workshop/heidelberg/october_2022/programme). For users 

looking to learn more about the technical side of the DFT + MLFT pipeline, please consult the 

Quanty documentation and the accompanying manuscript [74]. All of the code discussed in this 

pipeline along with example templates is available on Github at 

https://github.com/CharlesCardot/ElectronicStructureAutomation/tree/release/1.0.0. The two 

major FPLO and one major Quanty input files are included at the end of this appendix for 

reference. 

 

Pipeline Details 

Over the course of my PhD I have worked to automate the DFT + MLFT calculation pipeline 

through a combination of BASH and python scripts that make “smart” choices of certain 

parameters in the FPLO and Quanty input files. These choices are usually designed to get a 

“good enough” result for fast comparisons but are not meant to be truly converged (e.g. with 

respect to k-grid in FPLO) or publication ready. This pipeline is laid out in Figure B1. The script 

begins by looping over a directory of compounds (materials), each folder in materials is named 

using the compound formula (ex: NiO), and contains two files: (ex: NiO.cif and NiO.inp). The 

first is a crystallographic information file which can be acquired from most materials databases 

(ex: Materials Project [133], Crystallography Open Database [126]). The second is a series of 

https://www.quanty.org/workshop/heidelberg/october_2022/programme
https://github.com/CharlesCardot/ElectronicStructureAutomation/tree/release/1.0.0
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custom inputs that specify a few of the run parameters, which orbitals to include in the Wannier 

down-projection, and the number of ligand atoms in the local cluster around the central atom. 

The majority of the “automation” comes from setting up the DFT calculation for a given material 

and making sure that the Wannier orbitals provide a reasonable agreement with the real band 

structure and can be trusted to create the tight binding Hamiltonian. 

The upper block in Figure B1 shows the major steps in the pipeline. Once a user has 

customized the materials directory to include every system they want to calculate, the 

execute_all.sh loops over every compound and generates a working directory for it, with copies 

of the FPLO and Quanty input files. The .cif and .inp are used by write_0.py to create the input 

for the first FPLO band structure calculation, 0_RunNAMEFPLO.Quanty. While the file name 

has the .Quanty ending, this is only because Quanty uses Lua as a scripting language when 

creating a Quanty input file. This means that any .Quanty script can also be used for defining 

variables, functions, or i/o tasks as needed by the user. In this case, it is simply doing the job of 

generating the FPLO input from a list of variables, which specify details like the output directory 

(ex: DFT), real-space grid, k-grid, lattice constants, Wyckoff positions, and the exchange-

correlation potential. Once the calculation has converged, a check_simple_cs.py script is called to 

make sure that only one Wyckoff position for the specified 3d TM is present and that the 

calculation has properly converged. Finally, write_1.py is used to edit 

1_RunNAMEFPLO_WF.Quanty which controls the Wannier component of the DFT calculation. 

The main output of this is a list of single-particle overlap energies between the transition metal 

3d orbitals and the p orbitals of any neighboring ligands.  
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Figure B1: Diagram of the automation workflow for calculating the 2p XAS, XES, and XPS of 

an arbitrary 3d transition metal crystal structure. BASH scripts take care of directory setup, 

python scripts fill out input files using the .cif and .inp for each material, and FPLO and Quanty 

calculate the DFT and MLFT components of the pipeline respectively. 

This list (along with some symmetry operations to condense the matrix) is used to create the 

tight binding Hamiltonian HDFT within script.Quanty. Examples and more detailed explanations 

of the functions within Quanty are laid out in section 5 of Ackermann et al. [74], but I will 

briefly describe what is happening in the script.Quanty file. The raw terminal output of the DFT 

calculation is piped into out.wan, which can be directly read into Quanty using 

FileReadDresdenFPLO. A tight-binding (TB) object is generated from this output, and a cluster 

of atoms is created by taking a radius around some [x, y, z] position. The single-particle energies 
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from the TB object are then mapped onto the atoms in the cluster to create HDFTLarge, which 

can be converted into a block band diagonal format and truncated to include only 2 blocks 

(“NTri”, 2.) 

The Index and NFermi variables are helpers to establish the fermionic size of the system. For 

a 3d TM coupled to a 10x10 ligand block, with holes in the 2p and 1s orbitals, this equates to an 

NFermi = 10 + 10 + 6 + 2 = 28. The Index is a hashmap that allows one to quickly access the 

indices corresponding to each orbital. The density matrix rho_d is calculated to perform a double 

counting correction later in the script. From lines 82-103 the various Slater-Condon operators are 

defined which will later be added to the Hamiltonian. Note that the operators are all ‘rotated’ 

using YtoZtriple, which just transforms the basis from spherical harmonics to cubic harmonics. 

This has the advantage of being more computationally efficient because the basis is no longer 

complex, and more intuitive for users when dealing with linear polarizations. The radial 

wavefunctions are read in from the DFT calculation in lines 123-129, which are immediately 

used to extract F and G Slater-Condon integrals from the radial wavefunctions. One example is 

on line 234 where the double-counting corrected HDFT is calculated and the 3d-3d block is 

written out for convenience and later analysis. From line 243-271 additional operators are 

defined, mostly for the purpose of analyzing the characteristics of wavefunctions by taking 

expectation values of these operators. The ldots operators on lines 249 and 250, however, are 

used to add spin-orbit interaction to the HDFT Hamiltonian.  

The XES, XAS, and XPS transition operators are defined on lines 277-379. The XES and 

XAS operators are explicitly transitions of an electron between two orbitals, involving both a 

creation and annihilation operator. Because we are only dealing with a discrete basis of states, 

and we are not interested in the behavior of the photoelectron, the XPS transition operator can be 
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approximated by adding the spectra obtaining from annihilating each electron in the 2p shell. 

Now that all the operators and their coefficients have been defined, the full MLFT Hamiltonian 

for each state can be built (lines 385-439). The OperatorSetTrace function uses the charge-

transfer equations from section 2.4 to shift the centroids of any orbitals which are partially 

occupied. The lowest energy Npsi eigenstates of the non-ionized Hamiltonian (GS_Hamiltonian) 

are determined on line 466, and there is some logic on lines 502-523 to make sure that Npsi is 

large enough so that all thermally accessible states are found. The same thing is done for the 

system in the presence of a 1s core-hole (s_hole_Hamiltonian). 

The actual spectra are calculated by the CreateSpectra function which evaluates the matrix 

element from every ground eigenstate to every accessible final state from the 

p_hole_Hamiltonian. The thermal cutoff is enforced through Fermi-Dirac statistics (ex: line 

594). The dipole transition operators for each cartesian polarization are used to generate the 

individual polarized spectra, which are later combined to make a single isotropic spectrum and 

broadened before being written out to a file. The general procedure is the same for XAS, XES, 

and XPS, but the starting Hamiltonian for XES already includes as 1s core-hole (as addressed in 

4.4 A) so it requires a different loop over the “initial” wavefunctions. The main computational 

time comes from determining the ground states of the starting Hamiltonians and evaluating the 

individual matrix elements using the CreateSpectra function. As addressed in Ackermann et al. 

[74], the Lanczos method is used to determine the response function and find the lowest N 

eigenstates, which dramatically improves the computational cost of the calculation compared to 

exact diagonalization. 
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0_RunFPLONAME.Quanty 

  1. -- This script runs FPLO to create an LDA calculation of NAME 

  2.   

  3. -- The name of the program and version 

  4. FPLO  = "fplo14.00-49-x86_64" 

  5. FEdit = "fedit14.00-49-x86_64" 

  6.   

  7. directoryname = "DFT" 

  8.   

  9. -- create the directory where the calculation should be stored 

 10. os.execute("if [ ! -d \""..directoryname.."\" ]; then mkdir "..directoryname.."; fi") 

 11.   

 12. -- we use the -p option of FPLO to run it in a scripting mode 

 13. -- here the script to setup the calculation 

 14. FEditMenuOptions = [[ 

 15. # go to symmetry menu 

 16. @+@ 

 17. # title 

 18. @c@NAME 

 19. # enter spacegroup select box - SPACEGROUP 

 20. @s@ 

 21. @SPACEGROUP@ 

 22. @x@ 

 23. # structure type - crystal 

 24. @t@ 

 25. @c@ 

 26. @x@ 

 27. # lenth units - angstroem 

 28. @u@ 

 29. @a@ 

 30. @x@ 

 31. # lattice constants; 

 32. @l@ LATTICECONSTANTS 

 33. # set axis angles 

 34. @a@ AXISANGLES 

 35. # setup Wyckoff positions 

 36. @n@WYCHKOFF_NUMBER 

 37. # Now, give list of ALL !!! Wyckoff positions. 

 38. WYCHKOFF_POSITIONS 

 39. # 

 40. # NOW CALL UPDATE, NEVER FORGET THIS!!! 

 41. # 

 42. @+@ 

 43. # leave symmetry menu 

 44. @x@ 

 45. # back in main menu 

 46. # This was the symmetry setup, and now we follow our advise to create 

 47. # the default =.in input by using the REBUILD-action. 

 48. # (The space before the 'e' opens the alternative menu bar.) 

 49. @ e@ 

 50. # now we have the default input, and are still in the main menu 

 51.   

 52. # Set the number of k-points 

 53. @k@ 10 10 10 
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 54. # Set the xc-potential version 

 55. # first enter select box 

 56. @v@ 

 57. # select via search 

 58. !Perdew Wang 92! 

 59. # leave select box, go back to main menu 

 60. @x@ 

 61.   

 62. # Set the relativistic mode: 

 63. @r@ 

 64. # Select by search, please note that the parentheses indicating the hotkey 

 65. # are not considered in search mode. 

 66. # (Have a look at the select box interactively.) 

 67. !scalar relativistic! 

 68. # leave select box 

 69. @x@ 

 70. # Set number of iterations 

 71. @n@ 100 

 72.   

 73.   

 74. # last action must be 

 75. @q@ 

 76. ]] 

 77.   

 78. -- The first run to selfconsistency. 

 79. -- Copy the string above to an input file 

 80. file = io.open(directoryname.."/=.pipe", "w") 

 81. file:write(FEditMenuOptions) 

 82. file:close() 

 83. -- run FEdit 

 84. os.execute("cd "..directoryname.."; "..FEdit.." -p "..FPLO.." -pipe <=.pipe 2>+log 1> 

out.fedit") 

 85. -- run FPLO 

 86.   

 87.   

 88. os.execute("cd "..directoryname.."; "..FPLO.." 2>>+log 1 | tee out.scflow") 

 89.   

 90. -- Next we increase the number of k-points and numerical accuracy 

 91. FEditMenuOptionsMorekPoints = [[ 

 92. # Set the number of k-points 

 93. K-POINTS 

 94. # Set the accuracy of density 

 95. @a@ 1.e-10 

 96. # Set the accuracy of Etot 

 97. @a@ 1.e-10 

 98.   

 99. # Set options: 

100. @-@ 

101. # save the basis orbitals to disk 

102. !PLOT_BASIS!+ 

103. #leave menu 

104. @x@ 

105. # Set number of iterations 

106. @n@ 100 

107.   

108.   
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109. # last action must be 

110. @q@ 

111. ]] 

112.   

113. -- write the above string to a file 

114. file = io.open(directoryname.."/=.pipekmesh", "w") 

115. file:write(FEditMenuOptionsMorekPoints) 

116. file:close() 

117. -- run FEdit 

118. os.execute("cd "..directoryname.."; "..FEdit.." -p "..FPLO.." -pipe <=.pipekmesh 2>+log 1> 

out.feditkmesh") 

119. -- run FPLO 

120. os.execute("cd "..directoryname.."; "..FPLO.." 2>>+log 1 | tee out.scf") 

121.   

122. -- calculate bands 

123. FEditMenuOptionsBand = [[ 

124. @ b@ 

125.   @b@+ 

126.   @w@+ 

127. @x@ 

128. @q@"; 

129. ]] 

130.   

131. -- copy the string to a file 

132. file = io.open(directoryname.."/=.pipeband", "w") 

133. file:write(FEditMenuOptionsBand) 

134. file:close() 

135. -- run FEDIT 

136. os.execute("cd "..directoryname.."; "..FEdit.." -p "..FPLO.." -pipe <=.pipeband 2>+log 1> 

out.feditband") 

137. -- run FPLO 

138. os.execute("cd "..directoryname.."; "..FPLO.." 2>>+log 1 | tee out.band") 

139.   

 

1_RunFPLONAME_WF.Quanty 

  1. -- This script  downfold the solution of a DFT calculation for NAME to 

  2. -- a basis of TM_ELEMENT-TM_VALENCE and LIGAND_ELEMENT-LIGAND_VALENCE orbitals, hopefully 

  3.   

  4. -- The name of the program and version 

  5. FPLO  = "fplo14.00-49-x86_64" 

  6. FEdit = "fedit14.00-49-x86_64" 

  7.   

  8. directoryname = "DFT" 

  9.   

 10.   

 11. -- define the =.wandef file to calculate the Wannier functions 

 12. WanDef=[[doit 

 13.   

 14. ---- real space grid for pictures of WFs --------------------- 

 15.   

 16. WF_grid_basis conv 

 17. WF_grid_directions 

 18. 2 0 0 
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 19. 0 2 0 

 20. 0 0 2 

 21. WF_grid_subdivision  1 1 1 

 22.   

 23. ------------------------------------------------- 

 24. ham_cutoff 18 

 25. -- the thresholds need to be 0, otherwise the result is symmetry braking 

 26. -- the z^2 orbital has different values for the same hopping from the x^2-y^2 orbital 

 27. -- cutting them by value leads to a different behaviour of the z^2 from the x^2-y^2 orbital 

 28. -- and by hybridization the pz will be different from the px/py or the dxy from the dxz/dyz 

 29. WF_ham_threshold 0 

 30. WF_coeff_threshold 0 

 31. WF_write_coeff_stats on 

 32. ham_write_t_stats on 

 33.   

 34. ----- ham export grid -------- 

 35.   

 36. k_grid_basis prim 

 37. k_grid_directions 

 38. 1 0 0 

 39. 0 1 0 

 40. 0 0 1 

 41. k_grid_subdivision  1 1 1 

 42. k_grid_incl_periodic_points off 

 43.   

 44. ]] 

 45.   

 46. --Wandefs for the TM_ELEMENT atoms 

 47. for i=TM_START,TM_END do 

 48. WanDef = WanDef..[[ 

 49. wandef 

 50. on 

 51.   name TM_ELEMENT_]]..i..[[_3dxy 

 52.   emin EMIN 

 53.   emax EMAX 

 54.   de 2.0 

 55.   contrib 

 56.     site ]]..i..[[ 

 57.     difvec 0 0 0 

 58.     xaxis 1 0 0 

 59.     zaxis 0 0 1 

 60.     orb 3d-2 

 61.     fac    1 

 62. wandef 

 63. on 

 64.   name TM_ELEMENT_]]..i..[[_3dyz 

 65.   emin EMIN 

 66.   emax EMAX 

 67.   de 2.0 

 68.   contrib 

 69.     site ]]..i..[[  

 70.     difvec 0 0 0 

 71.     xaxis 1 0 0 

 72.     zaxis 0 0 1 

 73.     orb 3d-1 

 74.     fac    1 
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 75. wandef 

 76. on 

 77.   name TM_ELEMENT_]]..i..[[_3dz2 

 78.   emin EMIN 

 79.   emax EMAX 

 80.   de 2.0 

 81.   contrib 

 82.     site ]]..i..[[ 

 83.     difvec 0 0 0 

 84.     xaxis 1 0 0 

 85.     zaxis 0 0 1 

 86.     orb 3d+0 

 87.     fac    1 

 88. wandef 

 89. on 

 90.   name TM_ELEMENT_]]..i..[[_3dxz 

 91.   emin EMIN 

 92.   emax EMAX 

 93.   de 2.0 

 94.   contrib 

 95.     site ]]..i..[[ 

 96.     difvec 0 0 0 

 97.     xaxis 1 0 0 

 98.     zaxis 0 0 1 

 99.     orb 3d+1 

100.     fac    1 

101. wandef 

102. on 

103.   name TM_ELEMENT_]]..i..[[_3dx2-y2 

104.   emin EMIN 

105.   emax EMAX 

106.   de 2.0 

107.   contrib 

108.     site ]]..i..[[ 

109.     difvec 0 0 0 

110.     xaxis 1 0 0 

111.     zaxis 0 0 1 

112.     orb 3d+2 

113.     fac    1 

114. ]] 

115. end 

116.   

117.   

118. -- Wandefs for the LIGAND_ELEMENT Atoms 

119. for i=LIGAND_START,LIGAND_END do 

120. WanDef = WanDef..[[ 

121. wandef 

122. on 

123.   name LIGAND_ELEMENT_]]..i..[[_LIGAND_VALENCEy 

124.   emin EMIN 

125.   emax EMAX 

126.   de 2.0 

127.   contrib 

128.     site ]]..i..[[ 

129.     difvec 0 0 0 

130.     xaxis 1 0 0 
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131.     zaxis 0 0 1 

132.     orb LIGAND_VALENCE-1 

133.     fac    1 

134. wandef 

135. on 

136.   name LIGAND_ELEMENT_]]..i..[[_LIGAND_VALENCEz 

137.   emin EMIN 

138.   emax EMAX 

139.   de 2.0 

140.   contrib 

141.     site ]]..i..[[ 

142.     difvec 0 0 0 

143.     xaxis 1 0 0 

144.     zaxis 0 0 1 

145.     orb LIGAND_VALENCE+0 

146.     fac    1 

147. wandef 

148. on 

149.   name LIGAND_ELEMENT_]]..i..[[_LIGAND_VALENCEx 

150.   emin EMIN 

151.   emax EMAX 

152.   de 2.0 

153.   contrib 

154.     site ]]..i..[[ 

155.     difvec 0 0 0 

156.     xaxis 1 0 0 

157.     zaxis 0 0 1 

158.     orb LIGAND_VALENCE+1 

159.     fac    1 

160. ]] 

161. end 

162.   

163. -- write to file 

164. file = io.open(directoryname.."/=.wandef", "w") 

165. file:write(WanDef) 

166. file:close() 

167. -- run FPLO 

168. os.execute("cd "..directoryname.."; "..FPLO.." 2>>+log 1 | tee out.wandef") 

169. -- rerun FPLO, needed for Wannier functions.  

170. os.execute("cd "..directoryname.."; "..FPLO.." 2>>+log 1 | tee out.wan") 

171.   

 

 

script.Quanty 

  1. -- Material: 

  2. -- Date:  

  3. -- Author: Charles Cardot 

  4.   

  5. -- read the output of FPLO 

  6. print("--Read FPLO output--\n") 

  7. FPLOOut = FileReadDresdenFPLO("DFT_PATH/out.wan") 

  8.   
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  9. function print_HDFT(O) 

 10.     local m = OperatorToMatrix(O) 

 11.     m = Matrix.ToUserdata(Chop(m,1e-3)) 

 12.  local headers = {"dxy", "dxy", "dyz", "dyz", "dz^2", "dz^2", "dxz", "dxz", "dx2y2", 

"dx2y2"} 

 13.  local output = "" 

 14.  for i, str in ipairs(headers) do 

 15.      output = output .. str 

 16.      if i < #headers then 

 17.          output = output .. string.rep(" ", 9 - #str) 

 18.      end 

 19.  end 

 20.  print("     " .. output) 

 21.     print(Matrix.Sub(m, {1,20},{1,20})) 

 22. end 

 23.   

 24.   

 25. -- from the DFT output we can create a tight binding Hamiltonian 

 26. print("--Create the Tight Binding Hamiltonian--\n") 

 27. print("Create the tight binding Hamiltonian for the crystal\n") 

 28. TB = TightBindingDefFromDresdenFPLO(FPLOOut) 

 29.   

 30. -- Sorts cluster so that the TM atom comes first 

 31. ClusterTmp = FindAllAtomsInsideSphere(TB.Atoms,TB.Cell,{TM_FPLO_XYZ},TM_CLUSTER_RADIUS) 

 32. print("\n Temp Cluster") 

 33. print(ClusterTmp) 

 34. Cluster = {} 

 35.         for key, atom in pairs(ClusterTmp) do 

 36.             if atom[1] == "TM_ELEMENT" then 

 37.                 Cluster[1] = Copy(atom) 

 38.                 break 

 39.             end 

 40.         end 

 41.         for key, atom in pairs(ClusterTmp) do 

 42.             if atom[1] ~= "TM_ELEMENT" then 

 43.                 Cluster[#Cluster + 1] = Copy(atom) 

 44.             end 

 45.         end 

 46.         ClusterTmp = nil 

 47. print("\n Cluster Sorted") 

 48. print(Cluster) 

 49.   

 50. HDFTLarge, ClusterTB = CreateClusterHamiltonian(TB, {"open", Cluster},  {{"AddSpin",true}}) 

 51.   

 52. -- NTri = 2 grabs the 3d-3d block and first ligand-ligand block,  

 53. -- giving a total single particle basis of size 20 

 54. tri, T2 = BlockBandDiagonalize(OperatorToMatrix(HDFTLarge), 10, {{"NTri", 2}}) 

 55.   

 56. HDFT = Rotate(HDFTLarge, T2) 

 57. print_HDFT(HDFT) 

 58. print(HDFT.NF) 

 59. -----------------------------------------------------------------------------------------------

-------- 

 60. --Now we want to add the TM_ELEMENT 2p and 1s shell to the system 

 61. --New index object (first argument is a list of all orbitals, the second argument groups the 

two Ni orbitals) 
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 62. Index, NFermi = 

CreateAtomicIndicesDict({"TM_ELEMENT_3d","Ligand_d","TM_ELEMENT_2p","TM_ELEMENT_1s"}, 

{{"TM_ELEMENT",{"TM_ELEMENT_2p","TM_ELEMENT_3d","TM_ELEMENT_1s"}}}) 

 63. HDFT.NF = NFermi 

 64. print(HDFT.NF) 

 65. print("The indices of the system are now fixed:") 

 66. print(Index) 

 67. print("") 

 68.   

 69.   

 70. -- Next we need to correct for the double counting (i.e. subtract the DFT Mean-field 

approximation of the Coulomb interaction) 

 71. print("--Subtract the DFT Mean-field Coulomb interaction between the d electrons from the 

tight-binding Hamiltonian--\n") 

 72. -- calculate DFT density Matrix in order to create double counting potential 

 73. print("Calculate the DFT 1-particle density matrix\n") 

 74. rhoNoSpin = Chop(CalculateRho(TB)) 

 75. -- reduce the matrix to keep only the d shell 

 76. rhoNoSpin_d = Matrix.ToTable(Matrix.Sub(rhoNoSpin,5)) 

 77. -- add spin 

 78. rho_d = Matrix.AddSpin(rhoNoSpin_d) 

 79. print(rho_d) 

 80.   

 81. -- create the Coulomb operator on a basis of tesseral Harmonics 

 82. print("Create the Coulomb operator for the d-shell\n") 

 83. OppF0 = 

Rotate(NewOperator("U",10,Index["TM_ELEMENT_3d_Up"],Index["TM_ELEMENT_3d_Dn"],{1,0,0}),YtoZMatrix({"

d"})) 

 84. OppF2 = 

Rotate(NewOperator("U",10,Index["TM_ELEMENT_3d_Up"],Index["TM_ELEMENT_3d_Dn"],{0,1,0}),YtoZMatrix({"

d"})) 

 85. OppF4 = 

Rotate(NewOperator("U",10,Index["TM_ELEMENT_3d_Up"],Index["TM_ELEMENT_3d_Dn"],{0,0,1}),YtoZMatrix({"

d"})) 

 86.   

 87. YtoZtriple = YtoZMatrix({"TM_ELEMENT_3d","Ligand_d","TM_ELEMENT_2p","TM_ELEMENT_1s"}) 

 88.   

 89. print("Create the Coulomb operator for the s-shell\n") 

 90. OppF0sd = Rotate(NewOperator("U", NFermi, Index["TM_ELEMENT_1s_Up"],Index["TM_ELEMENT_1s_Dn"], 

Index["TM_ELEMENT_3d_Up"],Index["TM_ELEMENT_3d_Dn"], {1}, {0}),YtoZtriple) 

 91. OppG2sd = Rotate(NewOperator("U", NFermi, Index["TM_ELEMENT_1s_Up"],Index["TM_ELEMENT_1s_Dn"], 

Index["TM_ELEMENT_3d_Up"],Index["TM_ELEMENT_3d_Dn"], {0}, {1}),YtoZtriple) 

 92.   

 93. print("Create the Coulomb operator between the p- and d-shell\n") 

 94. OppUpdF0 = Rotate(NewOperator("U", NFermi, Index["TM_ELEMENT_2p_Up"],Index["TM_ELEMENT_2p_Dn"], 

Index["TM_ELEMENT_3d_Up"],Index["TM_ELEMENT_3d_Dn"], {1,0}, {0,0}),YtoZtriple) 

 95. OppUpdF2 = Rotate(NewOperator("U", NFermi, Index["TM_ELEMENT_2p_Up"],Index["TM_ELEMENT_2p_Dn"], 

Index["TM_ELEMENT_3d_Up"],Index["TM_ELEMENT_3d_Dn"], {0,1}, {0,0}),YtoZtriple) 

 96. OppUpdG1 = Rotate(NewOperator("U", NFermi, Index["TM_ELEMENT_2p_Up"],Index["TM_ELEMENT_2p_Dn"], 

Index["TM_ELEMENT_3d_Up"],Index["TM_ELEMENT_3d_Dn"], {0,0}, {1,0}),YtoZtriple) 

 97. OppUpdG3 = Rotate(NewOperator("U", NFermi, Index["TM_ELEMENT_2p_Up"],Index["TM_ELEMENT_2p_Dn"], 

Index["TM_ELEMENT_3d_Up"],Index["TM_ELEMENT_3d_Dn"], {0,0}, {0,1}),YtoZtriple) 

 98.   

 99. -- create the Hartree-Fock mean-field approximation that needs to be substracted from the DFT 

results 
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100. print("Create the Coulomb operator for the d-shell using the mean-field approximation (needs 

the DFT density)\n") 

101. OppF0MFDFT = Chop(MeanFieldOperator(OppF0,rho_d,{{"AddDFTSelfInteraction",true}})) 

102. OppF2MFDFT = Chop(MeanFieldOperator(OppF2,rho_d,{{"AddDFTSelfInteraction",true}})) 

103. OppF4MFDFT = Chop(MeanFieldOperator(OppF4,rho_d,{{"AddDFTSelfInteraction",true}})) 

104.   

105. -- change the dimension of the Coulomb operator the work on a space that includes both the d 

and the ligand orbitals 

106. --The operators acting on the d- and p-shell furthermore need to be rotated 

107. OppF0.NF = NFermi 

108. OppF2.NF = NFermi 

109. OppF4.NF = NFermi 

110. OppF0MFDFT.NF = NFermi 

111. OppF2MFDFT.NF = NFermi 

112. OppF4MFDFT.NF = NFermi 

113.   

114.   

115. -- set parameters 

116. print("--Set the parameters--\n") 

117. nd = NUMBER_OF_D 

118. Delta = DDDD 

119. Udd = UUUU 

120. Upd = 1.2*Udd -- based on rule of thumb, see Table II from 

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.85.165113 

121. Usd = 1.3*Udd 

122. --The slater integrals are calculated using the radial functions generated by FPLO, which can 

be read within Quanty: 

123. correlatedRadialFunctionss = ReadFPLOBasisFunctions({"1s"},"DFT_PATH/+fcor.TM_NUMBER.1") 

124. correlatedRadialFunctionsp = ReadFPLOBasisFunctions({"2p"},"DFT_PATH/+fcor.TM_NUMBER.1") 

125. correlatedRadialFunctionsd = ReadFPLOBasisFunctions({"3d"},"DFT_PATH/+fval.TM_NUMBER.1") 

126. --The radial functions are saved in two different files, but we need them in the same object: 

127. 

correlatedRadialFunctions={correlatedRadialFunctionss[1],correlatedRadialFunctionsp[1],correlatedRad

ialFunctionsd[1]} 

128. --Now the slater integrals can be calculated 

129. slaterIntegrals = GetSlaterIntegrals({"1s","2p","3d"},correlatedRadialFunctions) 

130.   

131. --The resulting object can then be evaluated at the position of interest: 

132. scale = 1.0 

133. F0ddtemp = slaterIntegrals["3d 3d 3d 3d"][0] * EnergyUnits.Ha.value*scale 

134. F2dd = slaterIntegrals["3d 3d 3d 3d"][2] * EnergyUnits.Ha.value*scale 

135. F4dd = slaterIntegrals["3d 3d 3d 3d"][4] * EnergyUnits.Ha.value*scale 

136. F0dd    = Udd+(F2dd+F4dd)*2/63 

137. F0pdtemp = slaterIntegrals["3d 2p 3d 2p"][0] * EnergyUnits.Ha.value*scale 

138. F2pd    =  slaterIntegrals["3d 2p 3d 2p"][2] * EnergyUnits.Ha.value*scale 

139. G1pd    =  slaterIntegrals["2p 3d 3d 2p"][1] * EnergyUnits.Ha.value*scale 

140. G3pd    =  slaterIntegrals["2p 3d 3d 2p"][3] * EnergyUnits.Ha.value*scale 

141. F0pd    = Upd + (1/15)*G1pd + (3/70)*G3pd 

142. F0sdtemp = slaterIntegrals["3d 1s 3d 1s"][0] * EnergyUnits.Ha.value*scale 

143. G2sd    =  slaterIntegrals["1s 3d 3d 1s"][2] * EnergyUnits.Ha.value*scale 

144. F0sd    = Usd 

145.   

146. -- Magnetic Field 

147. Bz = 0.1 * EnergyUnits.Tesla.value 

148.   

149. -- Exchange Field 
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150. mag_moment_dir = TM_MAG_DIR 

151. H_mag = TM_H_MAG -- (eV) 

152. Hx = H_mag * mag_moment_dir[1] 

153. Hy = H_mag * mag_moment_dir[2] 

154. Hz = H_mag * mag_moment_dir[3] 

155.   

156. -- Spin orbit 

157. zeta_3d =  TM_ZETA_3D 

158. zeta_2p =  TM_ZETA_2P 

159.   

160.   

161. ------------------------------------------------------------------------ 

162. -- Writing out run parameters 

163. ------------------------------------------------------------------------ 

164. print("Parameters:") 

165. print("nd = "..nd) 

166. print("Delta fit to exp = "..Delta.." eV") 

167. print("Udd fit to exp= "..Udd.." eV") 

168. print("Upd fit to exp = "..Upd.." eV") 

169. print("Usd fit to exp = "..Usd.." eV") 

170. print("Bz = "..Bz.." eV") 

171. print("Hx = "..Hx.." eV") 

172. print("Hy = "..Hy.." eV") 

173. print("Hz = "..Hz.." eV") 

174. print("zeta_3d = "..zeta_3d.." eV") 

175. print("zeta_2p = "..zeta_2p.." eV") 

176. print("") 

177.   

178. print("Slater integrals computed from DFT radial wavefunctions:") 

179. print("F0sd ab initio = "..F0sdtemp.." eV") 

180. print("F0dd ab initio = "..F0ddtemp.." eV") 

181. print("F2dd = "..F2dd.." eV") 

182. print("F4dd = "..F4dd.." eV") 

183. print("F0pd ab initio = "..F0pdtemp.." eV") 

184. print("F2pd = "..F2pd.." eV") 

185. print("G1pd = "..G1pd.." eV") 

186. print("G3pd = "..G3pd.." eV") 

187. print("G2sd = "..G2sd.." eV") 

188. print("") 

189.   

190. print("Monopole like Slater integrals (from U):") 

191. print("F0dd fit to exp = "..F0dd.." eV") 

192. print("F0pd fit to exp = "..F0pd.." eV") 

193. print("F0sd fit to exp = "..F0sd.." eV") 

194. print("") 

195.   

196. function table.val_to_str ( v ) 

197.   if "string" == type( v ) then 

198.     v = string.gsub( v, "\n", "\\n" ) 

199.     if string.match( string.gsub(v,"[^'\"]",""), '^"+$' ) then 

200.       return "'" .. v .. "'" 

201.     end 

202.     return '"' .. string.gsub(v,'"', '\\"' ) .. '"' 

203.   else 

204.     return "table" == type( v ) and table.tostring( v ) or 

205.       tostring( v ) 
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206.   end 

207. end 

208.   

209. function table.key_to_str ( k ) 

210.   if "string" == type( k ) and string.match( k, "^[_%a][_%a%d]*$" ) then 

211.     return k 

212.   else 

213.     return "[" .. table.val_to_str( k ) .. "]" 

214.   end 

215. end 

216.   

217. function table.tostring( tbl ) 

218.   local result, done = {}, {} 

219.   for k, v in ipairs( tbl ) do 

220.     table.insert( result, table.val_to_str( v ) ) 

221.     done[ k ] = true 

222.   end 

223.   for k, v in pairs( tbl ) do 

224.     if not done[ k ] then 

225.       table.insert( result, 

226.         table.key_to_str( k ) .. "=" .. table.val_to_str( v ) ) 

227.     end 

228.   end 

229.   return "{" .. table.concat( result, "," ) .. "}" 

230. end 

231.   

232.   

233.   

234. HDFT_temp = OperatorToMatrix(HDFT - F0dd * OppF0MFDFT - F2dd * OppF2MFDFT - F4dd * OppF4MFDFT) 

235. HDFT_temp = Matrix.Sub(HDFT_temp, {1,10},{1,10}) 

236. file = io.open("H_10x10.dat", "w") 

237. file:write(table.tostring(HDFT_temp)) 

238. file:close() 

239. ------------------------------------------------------------------------ 

240.   

241. print("--Define some additional operators--\n") 

242.   

243. OppSx    = Rotate(NewOperator("Sx",   

NFermi,Index["TM_ELEMENT_3d_Up"],Index["TM_ELEMENT_3d_Dn"]),YtoZtriple) 

244. OppSy    = Rotate(NewOperator("Sy",   

NFermi,Index["TM_ELEMENT_3d_Up"],Index["TM_ELEMENT_3d_Dn"]),YtoZtriple) 

245. OppSz    = Rotate(NewOperator("Sz",   

NFermi,Index["TM_ELEMENT_3d_Up"],Index["TM_ELEMENT_3d_Dn"]),YtoZtriple) 

246. OppLz    = Rotate(NewOperator("Lz",   

NFermi,Index["TM_ELEMENT_3d_Up"],Index["TM_ELEMENT_3d_Dn"]),YtoZtriple) 

247. OppJz    = Rotate(NewOperator("Jz",   

NFermi,Index["TM_ELEMENT_3d_Up"],Index["TM_ELEMENT_3d_Dn"]),YtoZtriple) 

248.   

249. Oppldots_3d = 

Rotate(NewOperator("ldots",NFermi,Index["TM_ELEMENT_3d_Up"],Index["TM_ELEMENT_3d_Dn"]),YtoZtriple) 

250. Oppldots_2p = 

Rotate(NewOperator("ldots",NFermi,Index["TM_ELEMENT_2p_Up"],Index["TM_ELEMENT_2p_Dn"]),YtoZtriple) 

251.   

252. OppSsqr  = Rotate(NewOperator("Ssqr", 

NFermi,Index["TM_ELEMENT_3d_Up"],Index["TM_ELEMENT_3d_Dn"]),YtoZtriple) 
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253. OppLsqr  = Rotate(NewOperator("Lsqr", 

NFermi,Index["TM_ELEMENT_3d_Up"],Index["TM_ELEMENT_3d_Dn"]),YtoZtriple) 

254. OppJsqr  = Rotate(NewOperator("Jsqr", 

NFermi,Index["TM_ELEMENT_3d_Up"],Index["TM_ELEMENT_3d_Dn"]),YtoZtriple) 

255.   

256. OppN_TM_ELEMENT      = NewOperator("Number",NFermi,Index["TM_ELEMENT"], Index["TM_ELEMENT"], 

{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}) 

257. OppN_Ligand          = NewOperator("Number",NFermi,Index["Ligand_d"], Index["Ligand_d"], 

{1,1,1,1,1,1,1,1,1,1}) 

258.   

259. OppN_TM_ELEMENT_yz   = NewOperator("Number",NFermi,{2,3}, {2,3}, {1,1}) 

260. OppN_TM_ELEMENT_xz   = NewOperator("Number",NFermi,{6,7}, {6,7}, {1,1}) 

261. OppN_TM_ELEMENT_xy   = NewOperator("Number",NFermi,{0,1}, {0,1}, {1,1}) 

262. OppN_TM_ELEMENT_x2y2 = NewOperator("Number",NFermi,{8,9}, {8,9}, {1,1}) 

263. OppN_TM_ELEMENT_z2   = NewOperator("Number",NFermi,{4,5}, {4,5}, {1,1}) 

264.   

265. OppN_TM_ELEMENT_3dUp = 

NewOperator("Number",NFermi,Index["TM_ELEMENT_3d_Up"],Index["TM_ELEMENT_3d_Up"],{1,1,1,1,1}) 

266. OppN_TM_ELEMENT_3dDn = 

NewOperator("Number",NFermi,Index["TM_ELEMENT_3d_Dn"],Index["TM_ELEMENT_3d_Dn"],{1,1,1,1,1}) 

267.   

268. OppN_TM_ELEMENT_eg  = OppN_TM_ELEMENT_x2y2 + OppN_TM_ELEMENT_z2 

269. OppN_TM_ELEMENT_t2g = OppN_TM_ELEMENT_yz + OppN_TM_ELEMENT_xz + OppN_TM_ELEMENT_xy 

270.   

271. OppD = OppN_TM_ELEMENT_eg + OppN_TM_ELEMENT_t2g 

272.   

273.   

274. -- XES 2p->1s dipole transition 

275. t=math.sqrt(1/2) 

276. Akm = {{1,-1,t},{1, 1,-t}} 

277. TXESx = Rotate(NewOperator("CF", NFermi, Index["TM_ELEMENT_1s_Up"], Index["TM_ELEMENT_1s_Dn"], 

Index["TM_ELEMENT_2p_Up"], Index["TM_ELEMENT_2p_Dn"], Akm), YtoZtriple) 

278. Akm = {{1,-1,t*I},{1, 1,t*I}} 

279. TXESy = Rotate(NewOperator("CF", NFermi, Index["TM_ELEMENT_1s_Up"], Index["TM_ELEMENT_1s_Dn"], 

Index["TM_ELEMENT_2p_Up"], Index["TM_ELEMENT_2p_Dn"], Akm), YtoZtriple) 

280. Akm = {{1,0,1}} 

281. TXESz = Rotate(NewOperator("CF", NFermi, Index["TM_ELEMENT_1s_Up"], Index["TM_ELEMENT_1s_Dn"], 

Index["TM_ELEMENT_2p_Up"], Index["TM_ELEMENT_2p_Dn"], Akm), YtoZtriple) 

282.   

283. TXESr = t*(TXESx - I * TXESy) 

284. TXESl =-t*(TXESx + I * TXESy) 

285.   

286. -- we can remove zero's from the dipole operator by chopping it 

287. TXESx.Chop() 

288. TXESy.Chop() 

289. TXESz.Chop() 

290. TXESr.Chop() 

291. TXESl.Chop()  

292.   

293.   

294. -- XAS 2p->3d dipole transition 

295. t=math.sqrt(1/2) 

296. Akm = {{1,-1,t},{1, 1,-t}} 

297. TXASx = Rotate(NewOperator("CF", NFermi, Index["TM_ELEMENT_3d_Up"], Index["TM_ELEMENT_3d_Dn"], 

Index["TM_ELEMENT_2p_Up"], Index["TM_ELEMENT_2p_Dn"], Akm), YtoZtriple) 

298. Akm = {{1,-1,t*I},{1, 1,t*I}} 
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299. TXASy = Rotate(NewOperator("CF", NFermi, Index["TM_ELEMENT_3d_Up"], Index["TM_ELEMENT_3d_Dn"], 

Index["TM_ELEMENT_2p_Up"], Index["TM_ELEMENT_2p_Dn"], Akm), YtoZtriple) 

300. Akm = {{1,0,1}} 

301. TXASz = Rotate(NewOperator("CF", NFermi, Index["TM_ELEMENT_3d_Up"], Index["TM_ELEMENT_3d_Dn"], 

Index["TM_ELEMENT_2p_Up"], Index["TM_ELEMENT_2p_Dn"], Akm), YtoZtriple) 

302.   

303. TXASr = t*(TXASx - I * TXASy) 

304. TXASl =-t*(TXASx + I * TXASy) 

305.   

306. -- we can remove zero's from the dipole operator by chopping it 

307. TXASx.Chop() 

308. TXASy.Chop() 

309. TXASz.Chop() 

310. TXASr.Chop() 

311. TXASl.Chop()  

312.   

313. -- L and R Polarizations, Z Propegation 

314. ----------------------------------------------------------------------- 

315. k = {0, 0, 1} 

316. ev = {0, 1, 0} 

317. eh = {1, 0, 0} 

318.   

319. er = {t * (eh[1] - I * ev[1]), 

320.       t * (eh[2] - I * ev[2]), 

321.       t * (eh[3] - I * ev[3])} 

322.     

323. el = {-t * (eh[1] + I * ev[1]), 

324.       -t * (eh[2] + I * ev[2]), 

325.       -t * (eh[3] + I * ev[3])} 

326.   

327. TXASr_zprop = er[1] * TXASx + er[2] * TXASy + er[3] * TXASz 

328. TXASl_zprop = el[1] * TXASx + el[2] * TXASy + el[3] * TXASz 

329. TXASr_zprop.Chop() 

330. TXASl_zprop.Chop() 

331. ----------------------------------------------------------------------- 

332.   

333. -- L and R Polarizations, Y Propegation 

334. ----------------------------------------------------------------------- 

335. k = {0, 1, 0} 

336. ev = {1, 0, 0} 

337. eh = {0, 0, 1} 

338.   

339. er = {t * (eh[1] - I * ev[1]), 

340.       t * (eh[2] - I * ev[2]), 

341.       t * (eh[3] - I * ev[3])} 

342.     

343. el = {-t * (eh[1] + I * ev[1]), 

344.       -t * (eh[2] + I * ev[2]), 

345.       -t * (eh[3] + I * ev[3])} 

346.   

347. TXASr_yprop = er[1] * TXASx + er[2] * TXASy + er[3] * TXASz 

348. TXASl_yprop = el[1] * TXASx + el[2] * TXASy + el[3] * TXASz 

349. TXASr_yprop.Chop() 

350. TXASl_yprop.Chop() 

351. ----------------------------------------------------------------------- 

352.   
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353. -- L and R Polarizations, X Propegation 

354. ----------------------------------------------------------------------- 

355. k = {1, 0, 0} 

356. ev = {0, 0, 1} 

357. eh = {0, 1, 0} 

358.   

359. er = {t * (eh[1] - I * ev[1]), 

360.       t * (eh[2] - I * ev[2]), 

361.       t * (eh[3] - I * ev[3])} 

362.     

363. el = {-t * (eh[1] + I * ev[1]), 

364.       -t * (eh[2] + I * ev[2]), 

365.       -t * (eh[3] + I * ev[3])} 

366.   

367. TXASr_xprop = er[1] * TXASx + er[2] * TXASy + er[3] * TXASz 

368. TXASl_xprop = el[1] * TXASx + el[2] * TXASy + el[3] * TXASz 

369. TXASr_xprop.Chop() 

370. TXASl_xprop.Chop() 

371. ----------------------------------------------------------------------- 

372.   

373. -- defining XPS annhilation operators 

374. OppAnnUp_0 = NewOperator('An', NFermi, Index["TM_ELEMENT_2p_Up"][1]) 

375. OppAnnUp_2 = NewOperator('An', NFermi, Index["TM_ELEMENT_2p_Up"][2]) 

376. OppAnnUp_4 = NewOperator('An', NFermi, Index["TM_ELEMENT_2p_Up"][3]) 

377. OppAnnDn_1 = NewOperator('An', NFermi, Index["TM_ELEMENT_2p_Dn"][1]) 

378. OppAnnDn_3 = NewOperator('An', NFermi, Index["TM_ELEMENT_2p_Dn"][2]) 

379. OppAnnDn_5 = NewOperator('An', NFermi, Index["TM_ELEMENT_2p_Dn"][3]) 

380. ----------------------------------------------------------------------- 

381.   

382.   

383. -- DEFINE ALL HAMILTONIANS 

384. -- define the Ground State Hamiltonian 

385. GS_Hamiltonian = HDFT - F0dd * OppF0MFDFT - F2dd * OppF2MFDFT - F4dd * OppF4MFDFT 

386.             + F0dd * OppF0 + F2dd * OppF2 + F4dd * OppF4 

387.             + Bz * (2*OppSz + OppLz) + zeta_3d * Oppldots_3d 

388.   

389. GS_Hamiltonian = GS_Hamiltonian + Hx * OppSx + Hy * OppSy + Hz * OppSz 

390.   

391. GS_Hamiltonian = GS_Hamiltonian/2 

392. GS_Hamiltonian = GS_Hamiltonian + ConjugateTranspose(GS_Hamiltonian) 

393.   

394. edgs = (10*Delta-nd*(19+nd)*Udd/2)/(10+nd) 

395. eLgs = nd*((1+nd)*Udd/2-Delta)/(10+nd) 

396.   

397. OperatorSetTrace(GS_Hamiltonian,edgs,Index["TM_ELEMENT_3d"]) 

398. OperatorSetTrace(GS_Hamiltonian,eLgs,Index["Ligand_d"]) 

399.   

400. -- define the 1s Core Hole State Hamiltonian 

401. print("--Define 1s Core Hole State Hamiltonian--\n") 

402. s_hole_Hamiltonian = HDFT - F0dd * OppF0MFDFT - F2dd * OppF2MFDFT - F4dd * OppF4MFDFT 

403.             + F0dd * OppF0 + F2dd * OppF2 + F4dd * OppF4 

404.             + Bz * (2*OppSz + OppLz) + zeta_3d * Oppldots_3d 

405.   

406. s_hole_Hamiltonian = s_hole_Hamiltonian + Hx * OppSx + Hy * OppSy + Hz * OppSz 

407.   

408. s_hole_Hamiltonian = s_hole_Hamiltonian + OppF0sd * F0sd + OppG2sd * G2sd 
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409. s_hole_Hamiltonian = s_hole_Hamiltonian/2 

410. s_hole_Hamiltonian = s_hole_Hamiltonian + ConjugateTranspose(s_hole_Hamiltonian) 

411.   

412. esinter      = -nd*Usd 

413. edinter      = -((-20*Delta + 19*nd*Udd+nd*nd*Udd+40*Usd)/(2*(10+nd))) 

414. eLinter      = nd*((1+nd)*Udd/2 - Delta + 2*Usd)/(10+nd) 

415.   

416. OperatorSetTrace(s_hole_Hamiltonian,esinter,Index["TM_ELEMENT_1s"]) 

417. OperatorSetTrace(s_hole_Hamiltonian,edinter,Index["TM_ELEMENT_3d"]) 

418. OperatorSetTrace(s_hole_Hamiltonian,eLinter,Index["Ligand_d"]) 

419.   

420. -- define the Final State Hamiltonian            

421. print("--Define XAS-Hamiltonian--\n") 

422. p_hole_Hamiltonian = HDFT - F0dd * OppF0MFDFT - F2dd * OppF2MFDFT - F4dd * OppF4MFDFT 

423.             + F0dd * OppF0 + F2dd * OppF2 + F4dd * OppF4 

424.             + Bz * (2*OppSz + OppLz) + zeta_3d * Oppldots_3d 

425.   

426. p_hole_Hamiltonian = p_hole_Hamiltonian + Hx * OppSx + Hy * OppSy + Hz * OppSz 

427.   

428. p_hole_Hamiltonian = p_hole_Hamiltonian + zeta_2p * Oppldots_2p 

429.             + F0pd * OppUpdF0 + F2pd * OppUpdF2 + G1pd * OppUpdG1 + G3pd * OppUpdG3 

430. p_hole_Hamiltonian = p_hole_Hamiltonian/2 

431. p_hole_Hamiltonian = p_hole_Hamiltonian + ConjugateTranspose(p_hole_Hamiltonian) 

432.               

433. epfinal      = -nd*Upd 

434. edfinal      = -((-20*Delta + 19*nd*Udd + nd*nd*Udd + 120*Upd)/(2*(10 + nd))) 

435. eLfinal      = nd*(-2*Delta + Udd + nd*Udd + 12*Upd)/(2*(10 + nd)) 

436.   

437. OperatorSetTrace(p_hole_Hamiltonian,epfinal,Index["TM_ELEMENT_2p"]) 

438. OperatorSetTrace(p_hole_Hamiltonian,edfinal,Index["TM_ELEMENT_3d"]) 

439. OperatorSetTrace(p_hole_Hamiltonian,eLfinal,Index["Ligand_d"]) 

440.   

441. print("edgs = "..edgs.." eV") 

442. print("eLgs = "..eLgs.." eV") 

443. print("edinter = "..edinter.." eV") 

444. print("eLinter = "..eLinter.." eV") 

445. print("edfinal = "..edfinal.." eV") 

446. print("eLfinal = "..eLfinal.." eV") 

447.   

448. ---------------------------------------------------------------------------------------- 

449. -- Collect operators to take expectation values of 

450. GS_Hamiltonian.Name = "<E>" 

451. s_hole_Hamiltonian.Name = "<E>" 

452. p_hole_Hamiltonian.Name = "<E>" 

453. OppSsqr.Name = "<S^2>" 

454. OppLsqr.Name = "<L^2>" 

455. OppJsqr.Name = "<J^2>" 

456. OppSz.Name = "<S_z^3d>" 

457. OppLz.Name = "<L_z^3d>" 

458. OppJz.Name = "<J_z^3d>" 

459. Oppldots_3d.Name = "<l.s>" 

460. OppN_TM_ELEMENT_eg.Name = "<Neg_TM_ELEMENT>" 

461. OppN_TM_ELEMENT_t2g.Name = "<Nt2g_TM_ELEMENT>" 

462. OppN_TM_ELEMENT.Name = "<N_TM_ELEMENT>" 

463. OppN_Ligand.Name = "<N_L>" 

464. OppD = OppN_TM_ELEMENT_eg + OppN_TM_ELEMENT_t2g 
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465. OppD.Name = "<N_TM_ELEMENT_d>" 

466.   

467. OppN_TM_ELEMENT_yz.Name = "<3d_yz>" 

468. OppN_TM_ELEMENT_xz.Name = "<3d_xz>" 

469. OppN_TM_ELEMENT_xy.Name = "<3x_xy>" 

470. OppN_TM_ELEMENT_x2y2.Name = "<3d_x2y2>" 

471. OppN_TM_ELEMENT_z2.Name = "<3x_z2>" 

472.   

473. OppN_TM_ELEMENT_3dUp.Name = "<N_TM_ELEMENT_dUp>" 

474. OppN_TM_ELEMENT_3dDn.Name = "<N_TM_ELEMENT_dDn>" 

475.   

476. GS_oppList={GS_Hamiltonian, OppSz, OppLz, OppJz, OppSsqr, OppLsqr, OppJsqr,  

477. -- OppN_TM_ELEMENT_eg, OppN_TM_ELEMENT_t2g, OppN_TM_ELEMENT_3dUp, OppN_TM_ELEMENT_3dDn,  

478. OppN_TM_ELEMENT_yz, OppN_TM_ELEMENT_xz, OppN_TM_ELEMENT_xy, OppN_TM_ELEMENT_x2y2, 

OppN_TM_ELEMENT_z2, 

479. OppD, OppN_TM_ELEMENT, OppN_Ligand} 

480.   

481. s_hole_oppList={s_hole_Hamiltonian, OppSz, OppLz, OppJz, OppSsqr, OppLsqr, OppJsqr,  

482. -- OppN_TM_ELEMENT_eg, OppN_TM_ELEMENT_t2g, OppN_TM_ELEMENT_3dUp, OppN_TM_ELEMENT_3dDn,  

483. OppN_TM_ELEMENT_yz, OppN_TM_ELEMENT_xz, OppN_TM_ELEMENT_xy, OppN_TM_ELEMENT_x2y2, 

OppN_TM_ELEMENT_z2, 

484. OppD, OppN_TM_ELEMENT, OppN_Ligand} 

485. ---------------------------------------------------------------------------------------- 

486.   

487. print("\n--Compute Ground State eigenstates--") 

488. -- we now can create the lowest Npsi eigenstates: 

489. Npsi=5 

490. print("Npsi", Npsi) 

491. StartRestrictions = {NFermi, 0, {DeterminantString(NFermi,Index["TM_ELEMENT_1s"]),2,2}, 

492. {DeterminantString(NFermi,Index["TM_ELEMENT_3d"],Index["Ligand_d"]),10+nd,10+nd}, 

493. {DeterminantString(NFermi,Index["TM_ELEMENT_2p"]),6,6}} 

494.   

495. print("\nGround State Start Restrictions") 

496. print(StartRestrictions) 

497.   

498. GS_psilist = Eigensystem(GS_Hamiltonian, StartRestrictions, Npsi, {{'Zero',1e-c,{'Epsilon',1e-

06}}) 

499. GS_psilist = Chop(GS_psilist) 

500.   

501. -- Making sure that all thermally accessible states are included in GS_psilist 

502. T = 293 * EnergyUnits.Kelvin.value 

503. Egrd = GS_psilist[1]*GS_Hamiltonian*GS_psilist[1] 

504. dZ = exp(-(GS_psilist[#GS_psilist] * GS_Hamiltonian * GS_psilist[#GS_psilist] - Egrd)/T) 

505. print("\ndZ") 

506. print(dZ) 

507. while dZ > 0.01 do 

508.     print("\n--Compute eigenstates--") 

509.     

510.     -- we now can create the lowest Npsi eigenstates: 

511.     Npsi = Npsi + 4 

512.     print("Npsi") 

513.     print(Npsi) 

514.      

515.     GS_psilist = Eigensystem(GS_Hamiltonian, StartRestrictions, Npsi, {{'Zero',1e-

06},{'Epsilon',1e-06}}) 

516.     GS_psilist = Chop(GS_psilist) 
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517.      

518.  Egrd = GS_psilist[1]*GS_Hamiltonian*GS_psilist[1] 

519.     dZ = exp(-(GS_psilist[#GS_psilist] * GS_Hamiltonian * GS_psilist[#GS_psilist] - Egrd)/T) 

520.   

521.     print("\ndZ") 

522.     print(dZ) 

523. end 

524.   

525.   

526. print("\n--Compute 1s Corehole eigenstates--") 

527. -- we now can create the lowest Npsi eigenstates: 

528. Npsi=5 

529. print("Npsi", Npsi) 

530. StartRestrictions = {NFermi, 0, {DeterminantString(NFermi,Index["TM_ELEMENT_1s"]),1,1}, 

531. {DeterminantString(NFermi,Index["TM_ELEMENT_3d"],Index["Ligand_d"]),10+nd,10+nd}, 

532. {DeterminantString(NFermi,Index["TM_ELEMENT_2p"]),6,6}} 

533.   

534. print("\n1s Corehole Start Restrictions") 

535. print(StartRestrictions) 

536.   

537. s_hole_psilist = Eigensystem(s_hole_Hamiltonian, StartRestrictions, Npsi, {{'Zero',1e-

06},{'Epsilon',1e-06}}) 

538. s_hole_psilist = Chop(s_hole_psilist) 

539.   

540. -- Making sure that all thermally accessible states are included in s_hole_psilist 

541. T = 293 * EnergyUnits.Kelvin.value 

542. Egrd = s_hole_psilist[1]*s_hole_Hamiltonian*s_hole_psilist[1] 

543. dZ = exp(-(s_hole_psilist[#s_hole_psilist] * s_hole_Hamiltonian * 

s_hole_psilist[#s_hole_psilist] - Egrd)/T) 

544. print("\ndZ") 

545. print(dZ) 

546. while dZ > 0.01 do 

547.     print("\n--Compute eigenstates--") 

548.     

549.     -- we now can create the lowest Npsi eigenstates: 

550.     Npsi = Npsi + 4 

551.     print("Npsi") 

552.     print(Npsi) 

553.      

554.     s_hole_psilist = Eigensystem(s_hole_Hamiltonian, StartRestrictions, Npsi, {{'Zero',1e-

06},{'Epsilon',1e-06}}) 

555.     s_hole_psilist = Chop(s_hole_psilist) 

556.      

557.  Egrd = s_hole_psilist[1]*s_hole_Hamiltonian*s_hole_psilist[1] 

558.     dZ = exp(-(s_hole_psilist[#s_hole_psilist] * s_hole_Hamiltonian * 

s_hole_psilist[#s_hole_psilist] - Egrd)/T) 

559.   

560.     print("\ndZ") 

561.     print(dZ) 

562. end 

563.   

564.   

565. print("\n--Ground State Expectation Values--") 

566. PrintExpectationValues(GS_psilist, GS_oppList,{{"ColWidth",10}}) 

567.   

568.   
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569. print("\n--1s Corehole State Expectation Values--") 

570. PrintExpectationValues(s_hole_psilist, s_hole_oppList,{{"ColWidth",10}}) 

571. -----------------------------------------------------------------------------------------------

---------------------- 

572.   

573. print("\n--Create the XES Spectra--\n") 

574.   

575. -- Constant Lorentzian Broadening -- 

576. ------------------------------------ 

577. Gamma = 0.1 

578. ------------------------------------ 

579. ----------- For Sticks ------------- 

580. Emin = -50 

581. Emax = 50 

582. NE= 4000 

583.   

584. epsilon = 0.0001 

585.   

586. Spectra_z=0 

587. Spectra_x=0 

588. Spectra_y=0 

589. Egrd = s_hole_psilist[1]*s_hole_Hamiltonian*s_hole_psilist[1] 

590. T = 293 * EnergyUnits.Kelvin.value 

591. Z = 0 

592.   

593. for j=1, Npsi do 

594.     dZ = Complex.Re(exp(-(s_hole_psilist[j] * s_hole_Hamiltonian * s_hole_psilist[j] - 

Egrd)/T)) 

595.     print(dZ) 

596.     if dZ < 0.01 then break end 

597.     Z  = Z + dZ 

598.     Spectra_z = Spectra_z + CreateSpectra(p_hole_Hamiltonian, TXESz, s_hole_psilist[j], 

{{"Emin",Emin}, {"Emax",Emax}, {"NE",NE}, {"Gamma",Gamma}, {"epsilon",epsilon}})*math.exp(-

(s_hole_psilist[j]*s_hole_Hamiltonian*s_hole_psilist[j] - Egrd)/T) 

599.     Spectra_x = Spectra_x + CreateSpectra(p_hole_Hamiltonian, TXESx, s_hole_psilist[j], 

{{"Emin",Emin}, {"Emax",Emax}, {"NE",NE}, {"Gamma",Gamma}, {"epsilon",epsilon}})*math.exp(-

(s_hole_psilist[j]*s_hole_Hamiltonian*s_hole_psilist[j] - Egrd)/T) 

600.     Spectra_y = Spectra_y + CreateSpectra(p_hole_Hamiltonian, TXESy, s_hole_psilist[j], 

{{"Emin",Emin}, {"Emax",Emax}, {"NE",NE}, {"Gamma",Gamma}, {"epsilon",epsilon}})*math.exp(-

(s_hole_psilist[j]*s_hole_Hamiltonian*s_hole_psilist[j] - Egrd)/T) 

601. end 

602. Spectra_z = Spectra_z/Z 

603. Spectra_x = Spectra_x/Z 

604. Spectra_y = Spectra_y/Z 

605.   

606. XESSpectra = (Spectra_z+Spectra_x+Spectra_y)/3 

607. XESSpectra.Print({{"file", "XES_sticks.dat"}}) 

608.   

609. XESSpectra.Broaden(0, 1.9) 

610. XESSpectra.Print({{"file", "XES.dat"}}) 

611.   

612. Spectra_z.Broaden(0, 1.9) 

613. Spectra_x.Broaden(0, 1.9) 

614. Spectra_y.Broaden(0, 1.9) 

615. Spectra_z.Print({{"file", "XES_zpol.dat"}}) 

616. Spectra_x.Print({{"file", "XES_xpol.dat"}}) 
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617. Spectra_y.Print({{"file", "XES_ypol.dat"}}) 

618.   

619.   

620. print("\n--Create the XAS and XPS Spectra--\n") 

621.   

622. -- Constant Lorentzian Broadening -- 

623. ------------------------------------ 

624. Gamma = 0.1 

625. ------------------------------------ 

626. ----------- For Sticks ------------- 

627. Emin = -50 

628. Emax = 50 

629. NE= 4000 

630.   

631. epsilon = 0.00001 

632.   

633. Spectra_z=0 -- Linearly Polarized along z 

634. Spectra_x=0 -- Linearly Polarized along x 

635. Spectra_y=0 -- Linearly Polarized along y 

636.   

637. Spectra_r_z=0 -- Right Circularly Polarized, propegating along z 

638. Spectra_l_z=0 -- Left Circularly Polarized,  propegating along z 

639. Spectra_r_y=0 -- Right Circularly Polarized, propegating along y 

640. Spectra_l_y=0 -- Left Circularly Polarized,  propegating along y 

641. Spectra_r_x=0 -- Right Circularly Polarized, propegating along x 

642. Spectra_l_x=0 -- Left Circularly Polarized,  propegating along x 

643.   

644. Spectra_0=0 -- Annhilation of electron at 0  

645. Spectra_1=0 -- Annhilation of electron at 1 

646. Spectra_2=0 -- Annhilation of electron at 2 

647. Spectra_3=0 -- Annhilation of electron at 3 

648. Spectra_4=0 -- Annhilation of electron at 4 

649. Spectra_5=0 -- Annhilation of electron at 5 

650.   

651. Egrd = GS_psilist[1]*GS_Hamiltonian*GS_psilist[1] 

652. T = 293 * EnergyUnits.Kelvin.value 

653. Z = 0 

654.   

655. for j=1, Npsi do 

656.     dZ = Complex.Re(exp(-(GS_psilist[j] * GS_Hamiltonian * GS_psilist[j] - Egrd)/T)) 

657.     print(dZ) 

658.     if dZ < 0.01 then break end 

659.     Z  = Z + dZ 

660.     Spectra_z = Spectra_z + CreateSpectra(p_hole_Hamiltonian, TXASz, GS_psilist[j], 

{{"Emin",Emin}, {"Emax",Emax}, {"NE",NE}, {"Gamma",Gamma}, {"epsilon",epsilon}})*math.exp(-

(GS_psilist[j]*GS_Hamiltonian*GS_psilist[j] - Egrd)/T) 

661.     Spectra_x = Spectra_x + CreateSpectra(p_hole_Hamiltonian, TXASx, GS_psilist[j], 

{{"Emin",Emin}, {"Emax",Emax}, {"NE",NE}, {"Gamma",Gamma}, {"epsilon",epsilon}})*math.exp(-

(GS_psilist[j]*GS_Hamiltonian*GS_psilist[j] - Egrd)/T) 

662.     Spectra_y = Spectra_y + CreateSpectra(p_hole_Hamiltonian, TXASy, GS_psilist[j], 

{{"Emin",Emin}, {"Emax",Emax}, {"NE",NE}, {"Gamma",Gamma}, {"epsilon",epsilon}})*math.exp(-

(GS_psilist[j]*GS_Hamiltonian*GS_psilist[j] - Egrd)/T) 

663.   

664.     Spectra_r_z = Spectra_r_z + CreateSpectra(p_hole_Hamiltonian, TXASr_zprop, GS_psilist[j], 

{{"Emin",Emin}, {"Emax",Emax}, {"NE",NE}, {"Gamma",Gamma}, {"epsilon",epsilon}})*math.exp(-

(GS_psilist[j]*GS_Hamiltonian*GS_psilist[j] - Egrd)/T) 



 

222 
 

665.     Spectra_l_z = Spectra_l_z + CreateSpectra(p_hole_Hamiltonian, TXASl_zprop, GS_psilist[j], 

{{"Emin",Emin}, {"Emax",Emax}, {"NE",NE}, {"Gamma",Gamma}, {"epsilon",epsilon}})*math.exp(-

(GS_psilist[j]*GS_Hamiltonian*GS_psilist[j] - Egrd)/T) 

666.     Spectra_r_y = Spectra_r_y + CreateSpectra(p_hole_Hamiltonian, TXASr_yprop, GS_psilist[j], 

{{"Emin",Emin}, {"Emax",Emax}, {"NE",NE}, {"Gamma",Gamma}, {"epsilon",epsilon}})*math.exp(-

(GS_psilist[j]*GS_Hamiltonian*GS_psilist[j] - Egrd)/T) 

667.     Spectra_l_y = Spectra_l_y + CreateSpectra(p_hole_Hamiltonian, TXASl_yprop, GS_psilist[j], 

{{"Emin",Emin}, {"Emax",Emax}, {"NE",NE}, {"Gamma",Gamma}, {"epsilon",epsilon}})*math.exp(-

(GS_psilist[j]*GS_Hamiltonian*GS_psilist[j] - Egrd)/T) 

668.     Spectra_r_x = Spectra_r_x + CreateSpectra(p_hole_Hamiltonian, TXASr_xprop, GS_psilist[j], 

{{"Emin",Emin}, {"Emax",Emax}, {"NE",NE}, {"Gamma",Gamma}, {"epsilon",epsilon}})*math.exp(-

(GS_psilist[j]*GS_Hamiltonian*GS_psilist[j] - Egrd)/T) 

669.     Spectra_l_x = Spectra_l_x + CreateSpectra(p_hole_Hamiltonian, TXASl_xprop, GS_psilist[j], 

{{"Emin",Emin}, {"Emax",Emax}, {"NE",NE}, {"Gamma",Gamma}, {"epsilon",epsilon}})*math.exp(-

(GS_psilist[j]*GS_Hamiltonian*GS_psilist[j] - Egrd)/T) 

670.   

671.     Spectra_0 = Spectra_0 + CreateSpectra(p_hole_Hamiltonian, OppAnnUp_0, GS_psilist[j], 

{{"Emin",Emin}, {"Emax",Emax}, {"NE",NE}, {"Gamma",Gamma}, {"epsilon",epsilon}})*math.exp(-

(GS_psilist[j]*GS_Hamiltonian*GS_psilist[j] - Egrd)/T) 

672.     Spectra_1 = Spectra_1 + CreateSpectra(p_hole_Hamiltonian, OppAnnDn_1, GS_psilist[j], 

{{"Emin",Emin}, {"Emax",Emax}, {"NE",NE}, {"Gamma",Gamma}, {"epsilon",epsilon}})*math.exp(-

(GS_psilist[j]*GS_Hamiltonian*GS_psilist[j] - Egrd)/T) 

673.     Spectra_2 = Spectra_2 + CreateSpectra(p_hole_Hamiltonian, OppAnnUp_2, GS_psilist[j], 

{{"Emin",Emin}, {"Emax",Emax}, {"NE",NE}, {"Gamma",Gamma}, {"epsilon",epsilon}})*math.exp(-

(GS_psilist[j]*GS_Hamiltonian*GS_psilist[j] - Egrd)/T) 

674.     Spectra_3 = Spectra_3 + CreateSpectra(p_hole_Hamiltonian, OppAnnDn_3, GS_psilist[j], 

{{"Emin",Emin}, {"Emax",Emax}, {"NE",NE}, {"Gamma",Gamma}, {"epsilon",epsilon}})*math.exp(-

(GS_psilist[j]*GS_Hamiltonian*GS_psilist[j] - Egrd)/T) 

675.     Spectra_4 = Spectra_4 + CreateSpectra(p_hole_Hamiltonian, OppAnnUp_4, GS_psilist[j], 

{{"Emin",Emin}, {"Emax",Emax}, {"NE",NE}, {"Gamma",Gamma}, {"epsilon",epsilon}})*math.exp(-

(GS_psilist[j]*GS_Hamiltonian*GS_psilist[j] - Egrd)/T) 

676.     Spectra_5 = Spectra_5 + CreateSpectra(p_hole_Hamiltonian, OppAnnDn_5, GS_psilist[j], 

{{"Emin",Emin}, {"Emax",Emax}, {"NE",NE}, {"Gamma",Gamma}, {"epsilon",epsilon}})*math.exp(-

(GS_psilist[j]*GS_Hamiltonian*GS_psilist[j] - Egrd)/T) 

677. end 

678. Spectra_z = Spectra_z/Z 

679. Spectra_x = Spectra_x/Z 

680. Spectra_y = Spectra_y/Z 

681.   

682. Spectra_r_z = Spectra_r_z/Z 

683. Spectra_l_z = Spectra_l_z/Z 

684. Spectra_r_y = Spectra_r_y/Z 

685. Spectra_l_y = Spectra_l_y/Z 

686. Spectra_r_x = Spectra_r_x/Z 

687. Spectra_l_x = Spectra_l_x/Z 

688.   

689. XASSpectra = (Spectra_z+Spectra_x+Spectra_y)/3 

690. XASSpectra.Print({{"file", "XAS_sticks.dat"}}) 

691.   

692. XASSpectra.Broaden(0, 0.5) 

693. XASSpectra.Print({{"file", "XAS.dat"}}) 

694.   

695. Spectra_z.Print({{"file", "XAS_zpol_sticks.dat"}}) 

696. Spectra_x.Print({{"file", "XAS_xpol_sticks.dat"}}) 

697. Spectra_y.Print({{"file", "XAS_ypol_sticks.dat"}}) 

698.   
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699. Spectra_r_z.Print({{"file", "XAS_rpol_zdir_sticks.dat"}}) 

700. Spectra_l_z.Print({{"file", "XAS_lpol_zdir_sticks.dat"}}) 

701. Spectra_r_y.Print({{"file", "XAS_rpol_ydir_sticks.dat"}}) 

702. Spectra_l_y.Print({{"file", "XAS_lpol_ydir_sticks.dat"}}) 

703. Spectra_r_x.Print({{"file", "XAS_rpol_xdir_sticks.dat"}}) 

704. Spectra_l_x.Print({{"file", "XAS_lpol_xdir_sticks.dat"}}) 

705.   

706. Spectra_z.Broaden(0, 0.5) 

707. Spectra_x.Broaden(0, 0.5) 

708. Spectra_y.Broaden(0, 0.5) 

709.   

710. Spectra_r_z.Broaden(0, 0.5)  

711. Spectra_l_z.Broaden(0, 0.5) 

712. Spectra_r_y.Broaden(0, 0.5) 

713. Spectra_l_y.Broaden(0, 0.5) 

714. Spectra_r_x.Broaden(0, 0.5) 

715. Spectra_l_x.Broaden(0, 0.5) 

716.   

717. Spectra_z.Print({{"file", "XAS_zpol.dat"}}) 

718. Spectra_x.Print({{"file", "XAS_xpol.dat"}}) 

719. Spectra_y.Print({{"file", "XAS_ypol.dat"}}) 

720.   

721. Spectra_r_z.Print({{"file", "XAS_rpol_zdir.dat"}}) 

722. Spectra_l_z.Print({{"file", "XAS_lpol_zdir.dat"}}) 

723. Spectra_r_y.Print({{"file", "XAS_rpol_ydir.dat"}}) 

724. Spectra_l_y.Print({{"file", "XAS_lpol_ydir.dat"}}) 

725. Spectra_r_x.Print({{"file", "XAS_rpol_xdir.dat"}}) 

726. Spectra_l_x.Print({{"file", "XAS_lpol_xdir.dat"}}) 

727.   

728. Spectra_0 = Spectra_0 / Z  

729. Spectra_1 = Spectra_1 / Z 

730. Spectra_2 = Spectra_2 / Z 

731. Spectra_3 = Spectra_3 / Z 

732. Spectra_4 = Spectra_4 / Z 

733. Spectra_5 = Spectra_5 / Z 

734.   

735. XPSSpectra = (Spectra_0 + Spectra_1 + Spectra_2 + Spectra_3 + Spectra_4 + Spectra_5) / 6 

736. XPSSpectra.Print({{"file", "XPS_sticks.dat"}}) 

737.   

738. XPSSpectra.Broaden(0, 0.5) 

739. XPSSpectra.Print({{"file", "XPS.dat"}}) 

740.   

741. print("Finished") 

742.   

 

8.3 Spin-orbit coupling parameters for 3d elements 

 

 

 The spin-orbit coupling parameters used in this thesis were calculated using the 

MISSING code interface for Cowan’s code. Each row lists the element, configuration, and the 
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associated 2p, 3p, and 3d spin-orbit coupling 𝜁 parameters. For configurations with no electrons 

in one of these shells, the value is left as just “-“. All values are in eV. 

 

 

 

Table 1: Spin-Orbit Coupling Constants for Ti  

Element Configuration 2p 3p 3d 

Ti 2p63p64s23d2 3.597 0.386 0.015 

Ti 2p63p64s13d2 3.597 0.386 0.015 

Ti 2p63p64s03d2 3.598 0.387 0.016 

Ti 2p63p64s23d1 3.595 0.401 0.018 

Ti 2p63p64s13d1 3.596 0.403 0.019 

Ti 2p63p64s03d1 3.597 0.406 0.019 

Ti 2p63p64s03d0 3.597 0.43 - 

Ti 2p53p64s23d2 3.774 0.451 0.026 

Ti 2p53p64s13d2 3.775 0.453 0.027 

Ti 2p53p64s03d2 3.776 0.455 0.027 

Ti 2p53p64s23d1 3.774 0.474 0.03 

Ti 2p53p64s13d1 3.775 0.477 0.031 

Ti 2p53p64s03d1 3.776 0.481 0.032 

Ti 2p53p64s03d0 3.778 0.51 - 

Ti 2p63p54s23d2 3.601 0.408 0.019 

Ti 2p63p54s13d2 3.601 0.409 0.019 

Ti 2p63p54s03d2 3.602 0.412 0.02 

Ti 2p63p54s23d1 3.6 0.428 0.022 

Ti 2p63p54s13d1 3.601 0.431 0.023 

Ti 2p63p54s03d1 3.603 0.435 0.024 

Ti 2p63p54s03d0 3.604 0.462 - 
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Table 2: Spin-Orbit Coupling Constants for V 

Element Configuration 2p 3p 3d 

V 2p63p64s23d3 4.441 0.492 0.021 

V 2p63p64s13d3 4.441 0.492 0.021 

V 2p63p64s03d3 4.442 0.493 0.022 

V 2p63p64s23d2 4.439 0.509 0.025 

V 2p63p64s13d2 4.44 0.511 0.026 

V 2p63p64s03d2 4.441 0.514 0.027 

V 2p63p64s03d1 4.441 0.54 0.031 

V 2p63p64s03d0 4.443 0.572 - 

V 2p53p64s23d3 4.648 0.566 0.035 

V 2p53p64s13d3 4.648 0.568 0.036 

V 2p53p64s03d3 4.649 0.57 0.036 

V 2p53p64s23d2 4.647 0.591 0.04 

V 2p53p64s13d2 4.648 0.594 0.041 

V 2p53p64s03d2 4.65 0.598 0.041 

V 2p53p64s03d1 4.652 0.63 0.047 

V 2p53p64s03d0 4.656 0.667 - 

V 2p63p54s23d3 4.446 0.516 0.026 

V 2p63p54s13d3 4.446 0.518 0.027 

V 2p63p54s03d3 4.447 0.52 0.027 

V 2p63p54s23d2 4.445 0.539 0.03 

V 2p63p54s13d2 4.446 0.542 0.031 

V 2p63p54s03d2 4.448 0.545 0.032 

V 2p63p54s03d1 4.449 0.576 0.036 

V 2p63p54s03d0 4.453 0.61 - 

 

Table 3: Spin-Orbit Coupling Constants for Cr 

Element Configuration 2p 3p 3d 

Cr 2p63p64s23d4 5.426 0.617 0.029 

Cr 2p63p64s13d4 5.426 0.617 0.03 

Cr 2p63p64s03d4 5.427 0.618 0.03 

Cr 2p63p64s23d3 5.424 0.637 0.034 

Cr 2p63p64s13d3 5.425 0.638 0.035 

Cr 2p63p64s03d3 5.426 0.641 0.035 

Cr 2p63p64s03d2 5.426 0.67 0.041 

Cr 2p63p64s03d1 5.428 0.705 0.046 

Cr 2p63p64s03d0 5.432 0.745 - 

Cr 2p53p64s23d4 5.665 0.701 0.045 

Cr 2p53p64s13d4 5.666 0.702 0.046 

Cr 2p53p64s03d4 5.667 0.705 0.047 
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Cr 2p53p64s23d3 5.665 0.729 0.051 

Cr 2p53p64s13d3 5.666 0.732 0.052 

Cr 2p53p64s03d3 5.668 0.736 0.053 

Cr 2p53p64s03d2 5.67 0.772 0.06 

Cr 2p53p64s03d1 5.674 0.812 0.066 

Cr 2p53p64s03d0 5.68 0.857 - 

Cr 2p63p54s23d4 5.431 0.644 0.035 

Cr 2p63p54s13d4 5.432 0.646 0.035 

Cr 2p63p54s03d4 5.433 0.648 0.036 

Cr 2p63p54s23d3 5.431 0.669 0.04 

Cr 2p63p54s13d3 5.432 0.672 0.04 

Cr 2p63p54s03d3 5.434 0.676 0.041 

Cr 2p63p54s03d2 5.435 0.71 0.047 

Cr 2p63p54s03d1 5.439 0.748 0.053 

Cr 2p63p54s03d0 5.444 0.79 - 

 

Table 4: Spin-Orbit Coupling Constants for Mn 

Element Configuration 2p 3p 3d 

Mn 2p63p64s23d5 6.568 0.764 0.039 

Mn 2p63p64s13d5 6.568 0.764 0.039 

Mn 2p63p64s03d5 6.569 0.764 0.04 

Mn 2p63p64s23d4 6.566 0.785 0.044 

Mn 2p63p64s13d4 6.567 0.787 0.045 

Mn 2p63p64s03d4 6.568 0.789 0.046 

Mn 2p63p64s03d3 6.568 0.822 0.052 

Mn 2p63p64s03d2 6.57 0.861 0.059 

Mn 2p63p64s03d1 6.573 0.904 0.066 

Mn 2p63p64s03d0 6.579 0.953 - 

Mn 2p53p64s23d5 6.843 0.858 0.058 

Mn 2p53p64s13d5 6.844 0.859 0.059 

Mn 2p53p64s03d5 6.845 0.862 0.059 

Mn 2p53p64s23d4 6.842 0.889 0.065 

Mn 2p53p64s13d4 6.843 0.892 0.065 

Mn 2p53p64s03d4 6.845 0.896 0.066 

Mn 2p53p64s03d3 6.847 0.936 0.074 

Mn 2p53p64s03d2 6.851 0.981 0.082 

Mn 2p53p64s03d1 6.858 1.03 0.09 

Mn 2p53p64s03d0 6.867 1.083 - 

Mn 2p63p54s23d5 6.574 0.794 0.045 

Mn 2p63p54s13d5 6.575 0.795 0.046 

Mn 2p63p54s03d5 6.576 0.797 0.047 
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Mn 2p63p54s23d4 6.573 0.821 0.051 

Mn 2p63p54s13d4 6.574 0.824 0.052 

Mn 2p63p54s03d4 6.576 0.828 0.053 

Mn 2p63p54s03d3 6.578 0.865 0.059 

Mn 2p63p54s03d2 6.581 0.908 0.066 

Mn 2p63p54s03d1 6.587 0.955 0.073 

Mn 2p63p54s03d0 6.596 1.006 - 

 

 

 

 

Table 5: Spin-Orbit Coupling Constants for Fe 

Element Configuration 2p 3p 3d 

Fe 2p63p64s23d6 7.366 0.928 0.043 

Fe 2p63p64s13d6 7.882 0.934 0.051 

Fe 2p63p64s03d6 7.883 0.934 0.052 

Fe 2p63p64s23d5 7.88 0.958 0.057 

Fe 2p63p64s13d5 7.881 0.959 0.058 

Fe 2p63p64s03d5 7.882 0.962 0.059 

Fe 2p63p64s03d4 7.882 0.998 0.066 

Fe 2p63p64s03d3 7.884 1.04 0.074 

Fe 2p63p64s03d2 7.887 1.088 0.082 

Fe 2p63p64s03d1 7.894 1.142 0.09 

Fe 2p63p64s03d0 7.903 1.199 - 

Fe 2p53p64s23d6 8.197 1.04 0.073 

Fe 2p53p64s13d6 8.198 1.041 0.073 

Fe 2p53p64s03d6 8.199 1.044 0.074 

Fe 2p53p64s23d5 8.196 1.074 0.08 

Fe 2p53p64s13d5 8.197 1.077 0.081 

Fe 2p53p64s03d5 8.199 1.081 0.082 

Fe 2p53p64s03d4 8.201 1.125 0.091 

Fe 2p53p64s03d3 8.205 1.175 0.1 

Fe 2p53p64s03d2 8.212 1.229 0.11 

Fe 2p53p64s03d1 8.221 1.288 0.119 

Fe 2p53p64s03d0 8.234 1.351 - 

Fe 2p63p54s23d6 7.889 0.967 0.058 

Fe 2p63p54s13d6 7.89 0.969 0.059 

Fe 2p63p54s03d6 7.891 0.971 0.059 

Fe 2p63p54s23d5 7.888 0.998 0.064 

Fe 2p63p54s13d5 7.89 1.001 0.065 

Fe 2p63p54s03d5 7.891 1.005 0.066 

Fe 2p63p54s03d4 7.893 1.046 0.074 
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Fe 2p63p54s03d3 7.897 1.092 0.082 

Fe 2p63p54s03d2 7.903 1.144 0.09 

Fe 2p63p54s03d1 7.911 1.201 0.099 

Fe 2p63p54s03d0 7.923 1.261 - 

 

Table 6: Spin-Orbit Coupling Constants for Co 

Element Configuration 2p 3p 3d 

Co 2p63p64s23d7 8.801 1.13 0.055 

Co 2p63p64s13d7 9.387 1.131 0.065 

Co 2p63p64s03d7 9.388 1.131 0.066 

Co 2p63p64s23d6 9.384 1.157 0.072 

Co 2p63p64s13d6 9.385 1.159 0.073 

Co 2p63p64s03d6 9.386 1.161 0.074 

Co 2p63p64s03d5 9.386 1.2 0.082 

Co 2p63p64s03d4 9.388 1.247 0.091 

Co 2p63p64s03d3 9.391 1.3 0.1 

Co 2p63p64s03d2 9.398 1.358 0.11 

Co 2p63p64s03d1 9.407 1.422 0.12 

Co 2p63p64s03d0 9.42 1.49 - 

Co 2p53p64s23d7 9.744 1.249 0.09 

Co 2p53p64s13d7 9.745 1.25 0.091 

Co 2p53p64s03d7 9.746 1.252 0.092 

Co 2p53p64s23d6 9.743 1.286 0.099 

Co 2p53p64s13d6 9.744 1.289 0.1 

Co 2p53p64s03d6 9.746 1.293 0.101 

Co 2p53p64s03d5 9.748 1.342 0.111 

Co 2p53p64s03d4 9.752 1.396 0.121 

Co 2p53p64s03d3 9.759 1.457 0.132 

Co 2p53p64s03d2 9.769 1.522 0.144 

Co 2p53p64s03d1 9.782 1.591 0.155 

Co 2p53p64s03d0 9.799 1.664 - 

Co 2p63p54s23d7 9.394 1.168 0.073 

Co 2p63p54s13d7 9.395 1.169 0.074 

Co 2p63p54s03d7 9.397 1.17 0.075 

Co 2p63p54s23d6 9.393 1.201 0.08 

Co 2p63p54s13d6 9.395 1.204 0.081 

Co 2p63p54s03d6 9.397 1.208 0.082 

Co 2p63p54s03d5 9.398 1.253 0.091 

Co 2p63p54s03d4 9.402 1.304 0.1 

Co 2p63p54s03d3 9.408 1.361 0.11 

Co 2p63p54s03d2 9.417 1.423 0.12 
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Co 2p63p54s03d1 9.429 1.49 0.13 

Co 2p63p54s03d0 9.445 1.561 - 

 

Table 7: Spin-Orbit Coupling Constants for Ni 

Element Configuration 2p 3p 3d 

Ni 2p63p64s23d8 10.482 1.566 0.113 

Ni 2p63p64s13d8 11.099 1.356 0.082 

Ni 2p63p64s03d8 11.1 1.356 0.083 

Ni 2p63p64s23d7 11.096 1.385 0.09 

Ni 2p63p64s13d7 11.097 1.386 0.09 

Ni 2p63p64s03d7 11.098 1.389 0.091 

Ni 2p63p64s03d6 11.098 1.431 0.101 

Ni 2p63p64s03d5 11.1 1.482 0.111 

Ni 2p63p64s03d4 11.103 1.54 0.121 

Ni 2p63p64s03d3 11.11 1.605 0.133 

Ni 2p63p64s03d2 11.119 1.675 0.145 

Ni 2p63p64s03d1 11.132 1.75 0.156 

Ni 2p63p64s03d0 11.149 1.829 - 

Ni 2p53p64s23d8 11.503 1.488 0.11 

Ni 2p53p64s13d8 11.504 1.489 0.111 

Ni 2p53p64s03d8 11.506 1.491 0.112 

Ni 2p53p64s23d7 11.502 1.529 0.12 

Ni 2p53p64s13d7 11.503 1.532 0.121 

Ni 2p53p64s03d7 11.505 1.536 0.122 

Ni 2p53p64s03d6 11.507 1.589 0.133 

Ni 2p53p64s03d5 11.511 1.649 0.145 

Ni 2p53p64s03d4 11.518 1.715 0.157 

Ni 2p53p64s03d3 11.528 1.786 0.17 

Ni 2p53p64s03d2 11.542 1.863 0.184 

Ni 2p53p64s03d1 11.559 1.944 0.197 

Ni 2p53p64s03d0 11.581 2.029 - 

Ni 2p63p54s23d8 11.108 1.397 0.09 

Ni 2p63p54s13d8 11.109 1.397 0.091 

Ni 2p63p54s03d8 11.11 1.399 0.092 

Ni 2p63p54s23d7 11.106 1.433 0.099 

Ni 2p63p54s13d7 11.108 1.436 0.1 

Ni 2p63p54s03d7 11.11 1.44 0.101 

Ni 2p63p54s03d6 11.111 1.49 0.111 

Ni 2p63p54s03d5 11.115 1.546 0.121 

Ni 2p63p54s03d4 11.121 1.609 0.132 

Ni 2p63p54s03d3 11.13 1.677 0.144 
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Ni 2p63p54s03d2 11.143 1.751 0.156 

Ni 2p63p54s03d1 11.159 1.829 0.168 

Ni 2p63p54s03d0 11.18 1.911 - 

 

Table 8: Spin-Orbit Coupling Constants for Cu 

Element Configuration 2p 3p 3d 

Cu 2p63p64s23d9 12.376 1.96 0.154 

Cu 2p63p64s13d9 13.038 1.613 0.101 

Cu 2p63p64s03d9 13.039 1.613 0.102 

Cu 2p63p64s23d8 13.035 1.645 0.11 

Cu 2p63p64s13d8 13.036 1.646 0.111 

Cu 2p63p64s03d8 13.038 1.648 0.112 

Cu 2p63p64s03d7 13.037 1.695 0.123 

Cu 2p63p64s03d6 13.038 1.751 0.134 

Cu 2p63p64s03d5 13.042 1.814 0.146 

Cu 2p63p64s03d4 13.048 1.885 0.158 

Cu 2p63p64s03d3 13.058 1.961 0.172 

Cu 2p63p64s03d2 13.071 2.043 0.186 

Cu 2p63p64s03d1 13.089 2.13 0.2 

Cu 2p63p64s03d0 13.11 2.222 - 

Cu 2p53p64s23d9 13.494 1.76 0.133 

Cu 2p53p64s13d9 13.495 1.761 0.134 

Cu 2p53p64s03d9 13.496 1.763 0.135 

Cu 2p53p64s23d8 13.492 1.804 0.144 

Cu 2p53p64s13d8 13.493 1.807 0.146 

Cu 2p53p64s03d8 13.496 1.812 0.147 

Cu 2p53p64s03d7 13.497 1.869 0.159 

Cu 2p53p64s03d6 13.501 1.935 0.172 

Cu 2p53p64s03d5 13.508 2.007 0.186 

Cu 2p53p64s03d4 13.518 2.085 0.201 

Cu 2p53p64s03d3 13.532 2.169 0.216 

Cu 2p53p64s03d2 13.55 2.258 0.232 

Cu 2p53p64s03d1 13.573 2.351 0.248 

Cu 2p53p64s03d0 13.6 2.449 - 

Cu 2p63p54s23d9 13.048 1.658 0.111 

Cu 2p63p54s13d9 13.049 1.659 0.112 

Cu 2p63p54s03d9 13.051 1.66 0.113 

Cu 2p63p54s23d8 13.046 1.698 0.121 

Cu 2p63p54s13d8 13.048 1.701 0.122 

Cu 2p63p54s03d8 13.05 1.705 0.123 

Cu 2p63p54s03d7 13.052 1.759 0.134 
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Cu 2p63p54s03d6 13.055 1.821 0.145 

Cu 2p63p54s03d5 13.061 1.889 0.158 

Cu 2p63p54s03d4 13.071 1.964 0.171 

Cu 2p63p54s03d3 13.084 2.044 0.185 

Cu 2p63p54s03d2 13.101 2.13 0.199 

Cu 2p63p54s03d1 13.122 2.22 0.213 

Cu 2p63p54s03d0 13.147 2.315 - 

 

Table 9: Spin-Orbit Coupling Constants for Zn 

Element Configuration 2p 3p 3d 

Zn 2p63p64s23d10 15.224 1.906 0.123 

Zn 2p63p64s13d10 15.225 1.905 0.123 

Zn 2p63p64s03d10 15.226 1.904 0.124 

Zn 2p63p64s23d9 15.221 1.94 0.133 

Zn 2p63p64s13d9 15.222 1.941 0.134 

Zn 2p63p64s03d9 15.224 1.943 0.136 

Zn 2p63p64s03d8 15.223 1.994 0.147 

Zn 2p63p64s03d7 15.224 2.054 0.16 

Zn 2p63p64s03d6 15.228 2.123 0.173 

Zn 2p63p64s03d5 15.234 2.2 0.187 

Zn 2p63p64s03d4 15.244 2.283 0.202 

Zn 2p63p64s03d3 15.257 2.373 0.218 

Zn 2p63p64s03d2 15.275 2.468 0.235 

Zn 2p63p64s03d1 15.297 2.569 0.251 

Zn 2p63p64s03d0 15.325 2.675 - 

Zn 2p53p64s23d10 15.735 2.068 0.16 

Zn 2p53p64s13d10 15.736 2.068 0.161 

Zn 2p53p64s03d10 15.738 2.07 0.162 

Zn 2p53p64s23d9 15.733 2.116 0.173 

Zn 2p53p64s13d9 15.735 2.119 0.174 

Zn 2p53p64s03d9 15.737 2.123 0.175 

Zn 2p53p64s03d8 15.739 2.186 0.189 

Zn 2p53p64s03d7 15.742 2.257 0.203 

Zn 2p53p64s03d6 15.749 2.336 0.219 

Zn 2p53p64s03d5 15.76 2.422 0.235 

Zn 2p53p64s03d4 15.774 2.513 0.252 

Zn 2p53p64s03d3 15.792 2.61 0.27 

Zn 2p53p64s03d2 15.815 2.712 0.288 

Zn 2p53p64s03d1 15.843 2.819 0.307 

Zn 2p53p64s03d0 15.876 2.931 - 

Zn 2p63p54s23d10 15.236 1.954 0.134 



 

232 
 

Zn 2p63p54s13d10 15.236 1.955 0.135 

Zn 2p63p54s03d10 15.238 1.956 0.137 

Zn 2p63p54s23d9 15.233 1.998 0.145 

Zn 2p63p54s13d9 15.235 2.001 0.147 

Zn 2p63p54s03d9 15.238 2.005 0.148 

Zn 2p63p54s03d8 15.239 2.063 0.16 

Zn 2p63p54s03d7 15.242 2.13 0.173 

Zn 2p63p54s03d6 15.249 2.205 0.187 

Zn 2p63p54s03d5 15.258 2.287 0.201 

Zn 2p63p54s03d4 15.271 2.375 0.217 

Zn 2p63p54s03d3 15.289 2.468 0.233 

Zn 2p63p54s03d2 15.31 2.568 0.25 

Zn 2p63p54s03d1 15.337 2.672 0.267 

Zn 2p63p54s03d0 15.368 2.78 - 
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